Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
RAG-Driven Generative AI

You're reading from   RAG-Driven Generative AI Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781836200918
Length 334 pages
Edition 1st Edition
Languages
Tools
Concepts
Arrow right icon
Author (1):
Arrow left icon
Denis Rothman Denis Rothman
Author Profile Icon Denis Rothman
Denis Rothman
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Why Retrieval Augmented Generation? 2. RAG Embedding Vector Stores with Deep Lake and OpenAI FREE CHAPTER 3. Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI 4. Multimodal Modular RAG for Drone Technology 5. Boosting RAG Performance with Expert Human Feedback 6. Scaling RAG Bank Customer Data with Pinecone 7. Building Scalable Knowledge-Graph-Based RAG with Wikipedia API and LlamaIndex 8. Dynamic RAG with Chroma and Hugging Face Llama 9. Empowering AI Models: Fine-Tuning RAG Data and Human Feedback 10. RAG for Video Stock Production with Pinecone and OpenAI 11. Other Books You May Enjoy
12. Index
Appendix

Evaluating the output with cosine similarity

In this section, we will implement cosine similarity to measure the similarity between user input and the generative AI model’s output. We will also measure the augmented user input with the generative AI model’s output. Let’s first define a cosine similarity function:

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def calculate_cosine_similarity(text1, text2):
    vectorizer = TfidfVectorizer()
    tfidf = vectorizer.fit_transform([text1, text2])
    similarity = cosine_similarity(tfidf[0:1], tfidf[1:2])
    return similarity[0][0]

Then, let’s calculate a score that measures the similarity between the user prompt and GPT-4’s response:

similarity_score = calculate_cosine_similarity(user_prompt, gpt4_response)
print(f"Cosine Similarity Score: {similarity_score:.3f}")

The score is low, although the output seemed...

You have been reading a chapter from
RAG-Driven Generative AI
Published in: Sep 2024
Publisher: Packt
ISBN-13: 9781836200918
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime