Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
LLM Engineer's Handbook

You're reading from   LLM Engineer's Handbook Master the art of engineering large language models from concept to production

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781836200079
Length 522 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Maxime Labonne Maxime Labonne
Author Profile Icon Maxime Labonne
Maxime Labonne
Paul Iusztin Paul Iusztin
Author Profile Icon Paul Iusztin
Paul Iusztin
Alex Vesa Alex Vesa
Author Profile Icon Alex Vesa
Alex Vesa
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Understanding the LLM Twin Concept and Architecture FREE CHAPTER 2. Tooling and Installation 3. Data Engineering 4. RAG Feature Pipeline 5. Supervised Fine-Tuning 6. Fine-Tuning with Preference Alignment 7. Evaluating LLMs 8. Inference Optimization 9. RAG Inference Pipeline 10. Inference Pipeline Deployment 11. MLOps and LLMOps 12. Other Books You May Enjoy
13. Index
Appendix: MLOps Principles

6. Reproducibility

Reproducibility means that every process within your ML systems should produce identical results given the same input. This has two main aspects.

The first one is that you should always know what the inputs are—for example, when training a model, you can use a plethora of hyperparameters. Thus, you need a way to always track what assets were used to generate the new assets, such as what dataset version and config were used to train the model.

The second aspect is based on the non-deterministic nature of ML processes. For example, when training a model from scratch, all the weights are initially randomly initialized. Thus, even if you use the same dataset and hyperparameters, you might end up with a model with a different performance. This aspect can be solved by always using a seed before generating random numbers, as in reality, we cannot digitally create randomness, only pseudo-random numbers. Thus, by providing a seed, we ensure that we always...

lock icon The rest of the chapter is locked
arrow left Previous Section
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime