Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Hands-On Mathematics for Deep Learning
Hands-On Mathematics for Deep Learning

Hands-On Mathematics for Deep Learning: Build a solid mathematical foundation for training efficient deep neural networks

Arrow left icon
Profile Icon Dawani
Arrow right icon
₱1616.99 ₱1796.99
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.6 (11 Ratings)
eBook Jun 2020 364 pages 1st Edition
eBook
₱1616.99 ₱1796.99
Paperback
₱2245.99
Subscription
Free Trial
Arrow left icon
Profile Icon Dawani
Arrow right icon
₱1616.99 ₱1796.99
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.6 (11 Ratings)
eBook Jun 2020 364 pages 1st Edition
eBook
₱1616.99 ₱1796.99
Paperback
₱2245.99
Subscription
Free Trial
eBook
₱1616.99 ₱1796.99
Paperback
₱2245.99
Subscription
Free Trial

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Table of content icon View table of contents Preview book icon Preview Book

Hands-On Mathematics for Deep Learning

Linear Algebra

In this chapter, we will be covering the main concepts of linear algebra, and the concepts learned here will serve as the backbone on which we will learn all the concepts in the chapters to come, so it is important that you pay attention.

It is very important for you to know that these chapters cannot be substituted for an education in mathematics; they exist merely to help you better grasp the concepts of deep learning and how various architectures work and to develop an intuition for why that is, so you can become a better practitioner in the field.

At its core, algebra is nothing more than the study of mathematical symbols and the rules for manipulating these symbols. The field of algebra acts as a unifier for all of mathematics and provides us with a way of thinking. Instead of using numbers, we use letters to represent variables.

Linear algebra, however, concerns only linear transformations and vector spaces. It allows us to represent information through vectors, matrices, and tensors, and having a good understanding of linear algebra will take you a long way on your journey toward getting a very strong understanding of deep learning. It is said that a mathematical problem can only be solved if it can be reduced to a calculation in linear algebra. This speaks to the power and usefulness of linear algebra.

This chapter will cover the following topics:

  • Comparing scalars and vectors
  • Linear equations
  • Matrix operations
  • Vector spaces and subspaces
  • Linear maps
  • Matrix decompositions

Comparing scalars and vectors

Scalars are regular numbers, such as 7, 82, and 93,454. They only have a magnitude and are used to represent time, speed, distance, length, mass, work, power, area, volume, and so on.

Vectors, on the other hand, have magnitude and direction in many dimensions. We use vectors to represent velocity, acceleration, displacement, force, and momentum. We write vectors in bold—such as a instead of a—and they are usually an array of multiple numbers, with each number in this array being an element of the vector.

We denote this as follows:

Here, shows the vector is in n-dimensional real space, which results from taking the Cartesian product of n times; shows each element is a real number; i is the position of each element; and, finally, is a natural number, telling us how many elements are in the vector.

As with regular numbers, you can add and subtract vectors. However, there are some limitations.

Let's take the vector we saw earlier (x) and add it with another vector (y), both of which are in , so that the following applies:

However, we cannot add vectors with vectors that do not have the same dimension or scalars.

Note that when in , we reduce to 2-dimensions (for example, the surface of a sheet of paper), and when n = 3, we reduce to 3-dimensions (the real world).

We can, however, multiply scalars with vectors. Let λ be an arbitrary scalar, which we will multiply with the vector , so that the following applies:

As we can see, λ gets multiplied by each xi in the vector. The result of this operation is that the vector gets scaled by the value of the scalar.

For example, let , and . Then, we have the following:

While this works fine for multiplying by a whole number, it doesn't help when working with fractions, but you should be able to guess how it works. Let's see an example.

Let , and . Then, we have the following:

There is a very special vector that we can get by multiplying any vector by the scalar, 0. We denote this as 0 and call it the zero vector (a vector containing only zeros).

Left arrow icon Right arrow icon

Key benefits

  • Understand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networks
  • Learn the mathematical concepts needed to understand how deep learning models function
  • Use deep learning for solving problems related to vision, image, text, and sequence applications

Description

Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL.

Who is this book for?

This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.

What you will learn

  • Understand the key mathematical concepts for building neural network models
  • Discover core multivariable calculus concepts
  • Improve the performance of deep learning models using optimization techniques
  • Cover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizer
  • Understand computational graphs and their importance in DL
  • Explore the backpropagation algorithm to reduce output error
  • Cover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Jun 12, 2020
Length: 364 pages
Edition : 1st
Language : English
ISBN-13 : 9781838641849
Vendor :
Google
Category :
Languages :
Tools :

What do you get with eBook?

Product feature icon Instant access to your Digital eBook purchase
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Billing Address

Product Details

Publication date : Jun 12, 2020
Length: 364 pages
Edition : 1st
Language : English
ISBN-13 : 9781838641849
Vendor :
Google
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
$19.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
$199.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₱260 each
Feature tick icon Exclusive print discounts
$279.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just ₱260 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total ₱5877.97 ₱6532.97 ₱655.00 saved
Practical Discrete Mathematics
₱3367.99
40 Algorithms Every Programmer Should Know
₱2551.99
Hands-On Mathematics for Deep Learning
₱2245.99
Total ₱5877.97₱6532.97 ₱655.00 saved Stars icon

Table of Contents

18 Chapters
Section 1: Essential Mathematics for Deep Learning Chevron down icon Chevron up icon
Linear Algebra Chevron down icon Chevron up icon
Vector Calculus Chevron down icon Chevron up icon
Probability and Statistics Chevron down icon Chevron up icon
Optimization Chevron down icon Chevron up icon
Graph Theory Chevron down icon Chevron up icon
Section 2: Essential Neural Networks Chevron down icon Chevron up icon
Linear Neural Networks Chevron down icon Chevron up icon
Feedforward Neural Networks Chevron down icon Chevron up icon
Regularization Chevron down icon Chevron up icon
Convolutional Neural Networks Chevron down icon Chevron up icon
Recurrent Neural Networks Chevron down icon Chevron up icon
Section 3: Advanced Deep Learning Concepts Simplified Chevron down icon Chevron up icon
Attention Mechanisms Chevron down icon Chevron up icon
Generative Models Chevron down icon Chevron up icon
Transfer and Meta Learning Chevron down icon Chevron up icon
Geometric Deep Learning Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Top Reviews
Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.6
(11 Ratings)
5 star 54.5%
4 star 0%
3 star 9.1%
2 star 27.3%
1 star 9.1%
Filter icon Filter
Top Reviews

Filter reviews by




Davd Suzuki Oct 24, 2024
Full star icon Full star icon Full star icon Full star icon Full star icon 5
Feefo Verified review Feefo
Kabeer Oct 09, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
The book is a good introductory text to get into the subject. Really clarifies concepts in a very simple and intuitive way. Recommended in particular for anyone who has struggled with math in the past too.
Amazon Verified review Amazon
Matthew Emerick Jun 29, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
About This BookThis book is the latest in a collection of attempts to teach aspiring and experience machine learning practitioners the mathematics underlying their field. Knowing this will help anyone truly understand how their algorithms work in more detail and can assist in strengthening their predictions or troubleshooting when the results don't match up.It begins with the basics of linear algebra, calculus, and statistics, moves on to optimization and graph theory, and then digs deeper into more specific mathematics. The second section takes the foundation and looks at different kinds of simpler neural networks. The final section pushes even further into deep learning and makes sure that the reader can explain why their deep learning models do what they do.Who is This For?From the Preface, this book is for anyone who wants to go from the basic mathematical concepts to the exact mathematical structures used in calculating the results for deep learning. It does not expect the reader to know the math, though it would be helpful, but it does expect the reader to know the basics of how machine learning works.With how difficult most people find mathematics, I know that many machine learning practitioners won't want to delve deep into these fundamentals, if they even are curious at all. But every field has a foundation, and I would argue that mathematics is that foundation for machine learning. After all, machine learning is fundamentally a mathematically transformation of the input to the output.Why Was This Written?There are only a handful of books written on this subject, of which I own most of them. Most focus only on the basics of linear algebra, calculus, and statistics. Another perspective on comparing these books is the approach taken. I can think of only one other book written specifically for the mathematics of deep learning, and that one assumes the reader thinks more like a mathematician. This book, instead, sees the reader as a developer with hands on experience who wants to know why their algorithms work. I feel that this is an important contribution to anyone's collection.OrganizationThree three section organization works well here. The author progresses from the basics to the core subject matter indicated by the title of the book without leaving anything important out. Remember, this book isn't about learning everything about these mathematical subjects, but about knowing enough to better understand deep learning. You're aren't going to focus on proving that the math works, but will trust that the math works and apply it.Within each chapter, the author deftly introduces each topic, builds on the subject from the basics up to the more advanced subtopics you should know about, and then gives a summary to refresh the earlier material and bring it all together. There is a complete preface, which I recommend you read through before starting, and a further reading section with other offerings from the publisher on deep learning.Did This Book Succeed?I think the author did very well. It gives the reader all of the mathematics they will need to progress on their machine learning and deep learning journeys. Where I think this book fell short, as it is written for practitioners, is that it could have expanded by another 100-150 pages and added in code to show how a programming language can efficiently calculate the math. This could help the reader write better code. If the author decides to write a second edition, I hope that they will consider this.Rating and Final ThoughtsI give this book a 5 out of 5. It is complete, readable, and helpful. It does what it says it is going to do very well. I commend the author and hope to see more from them. If you are considering buying this book, it is a good addition if you want to be a better machine learning practitioner.
Amazon Verified review Amazon
Amazon Customer Oct 09, 2020
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I have been a data scientist for several years now and because of the hype I decided to try and learn deep learning. I decided to buy this book and it does a very good job of explaining how the different fields of math such as linear algebra, vector calculus, probability, etc come together to create various neural networks in a very clear and simple manner that anyone can understand. And it gives several good walk-throughs of forward and backward propagation in various NNs and shows comparisons between architectures and possible use cases as well.
Amazon Verified review Amazon
TD59 Feb 24, 2021
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I teach Machine Learning in graduate school. Many times, students ask me for a book that provides a quick refresh of key math principles. While there are many great books to choose from, I usually put Hands-on Mathematics high on my list.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

How do I buy and download an eBook? Chevron down icon Chevron up icon

Where there is an eBook version of a title available, you can buy it from the book details for that title. Add either the standalone eBook or the eBook and print book bundle to your shopping cart. Your eBook will show in your cart as a product on its own. After completing checkout and payment in the normal way, you will receive your receipt on the screen containing a link to a personalised PDF download file. This link will remain active for 30 days. You can download backup copies of the file by logging in to your account at any time.

If you already have Adobe reader installed, then clicking on the link will download and open the PDF file directly. If you don't, then save the PDF file on your machine and download the Reader to view it.

Please Note: Packt eBooks are non-returnable and non-refundable.

Packt eBook and Licensing When you buy an eBook from Packt Publishing, completing your purchase means you accept the terms of our licence agreement. Please read the full text of the agreement. In it we have tried to balance the need for the ebook to be usable for you the reader with our needs to protect the rights of us as Publishers and of our authors. In summary, the agreement says:

  • You may make copies of your eBook for your own use onto any machine
  • You may not pass copies of the eBook on to anyone else
How can I make a purchase on your website? Chevron down icon Chevron up icon

If you want to purchase a video course, eBook or Bundle (Print+eBook) please follow below steps:

  1. Register on our website using your email address and the password.
  2. Search for the title by name or ISBN using the search option.
  3. Select the title you want to purchase.
  4. Choose the format you wish to purchase the title in; if you order the Print Book, you get a free eBook copy of the same title. 
  5. Proceed with the checkout process (payment to be made using Credit Card, Debit Cart, or PayPal)
Where can I access support around an eBook? Chevron down icon Chevron up icon
  • If you experience a problem with using or installing Adobe Reader, the contact Adobe directly.
  • To view the errata for the book, see www.packtpub.com/support and view the pages for the title you have.
  • To view your account details or to download a new copy of the book go to www.packtpub.com/account
  • To contact us directly if a problem is not resolved, use www.packtpub.com/contact-us
What eBook formats do Packt support? Chevron down icon Chevron up icon

Our eBooks are currently available in a variety of formats such as PDF and ePubs. In the future, this may well change with trends and development in technology, but please note that our PDFs are not Adobe eBook Reader format, which has greater restrictions on security.

You will need to use Adobe Reader v9 or later in order to read Packt's PDF eBooks.

What are the benefits of eBooks? Chevron down icon Chevron up icon
  • You can get the information you need immediately
  • You can easily take them with you on a laptop
  • You can download them an unlimited number of times
  • You can print them out
  • They are copy-paste enabled
  • They are searchable
  • There is no password protection
  • They are lower price than print
  • They save resources and space
What is an eBook? Chevron down icon Chevron up icon

Packt eBooks are a complete electronic version of the print edition, available in PDF and ePub formats. Every piece of content down to the page numbering is the same. Because we save the costs of printing and shipping the book to you, we are able to offer eBooks at a lower cost than print editions.

When you have purchased an eBook, simply login to your account and click on the link in Your Download Area. We recommend you saving the file to your hard drive before opening it.

For optimal viewing of our eBooks, we recommend you download and install the free Adobe Reader version 9.