We will first learn about TD learning. This is a very fundamental concept in RL. In TD learning, the learning of the agent is attained by experience. Several trial episodes are undertaken of the environment, and the rewards accrued are used to update the value functions. Specifically, the agent will keep an update of the state-action value functions as it experiences new states/actions. The Bellman equation is used to update this state-action value function, and the goal is to minimize the TD error. This essentially means the agent is reducing its uncertainty of which action is the optimal action in a given state; it gains confidence on the optimal action in a given state by lowering the TD error.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Japan
Slovakia