Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TensorFlow Machine Learning Projects

You're reading from   TensorFlow Machine Learning Projects Build 13 real-world projects with advanced numerical computations using the Python ecosystem

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781789132212
Length 322 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ankit Jain Ankit Jain
Author Profile Icon Ankit Jain
Ankit Jain
Dr. Amita Kapoor Dr. Amita Kapoor
Author Profile Icon Dr. Amita Kapoor
Dr. Amita Kapoor
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Overview of TensorFlow and Machine Learning FREE CHAPTER 2. Using Machine Learning to Detect Exoplanets in Outer Space 3. Sentiment Analysis in Your Browser Using TensorFlow.js 4. Digit Classification Using TensorFlow Lite 5. Speech to Text and Topic Extraction Using NLP 6. Predicting Stock Prices using Gaussian Process Regression 7. Credit Card Fraud Detection using Autoencoders 8. Generating Uncertainty in Traffic Signs Classifier Using Bayesian Neural Networks 9. Generating Matching Shoe Bags from Shoe Images Using DiscoGANs 10. Classifying Clothing Images using Capsule Networks 11. Making Quality Product Recommendations Using TensorFlow 12. Object Detection at a Large Scale with TensorFlow 13. Generating Book Scripts Using LSTMs 14. Playing Pacman Using Deep Reinforcement Learning 15. What is Next? 16. Other Books You May Enjoy

Overview of TensorFlow and Machine Learning

TensorFlow is a popular library for implementing machine learning-based solutions. It includes a low-level API known as TensorFlow core and many high-level APIs, including two of the most popular ones, known as TensorFlow Estimators and Keras. In this chapter, we will learn about the basics of TensorFlow and build a machine learning model using logistic regression to classify handwritten digits as an example.

We will cover the following topics in this chapter:

  • TensorFlow core:
    • Tensors in TensorFlow core
    • Constants
    • Placeholders
    • Operations
    • Tensors from Python objects
    • Variables
    • Tensors from library functions
  • Computation graphs:
    • Lazy loading and execution order
    • Graphs on multiple devices – CPU and GPGPU
    • Working with multiple graphs
  • Machine learning, classification, and logistic regression
  • Logistic regression examples in TensorFlow
  • Logistic regression examples in Keras
You can follow the code examples in this chapter by using the Jupyter Notebook named ch-01_Overview_of_TensorFlow_and_Machine_Learning.ipynb that's included in the code bundle.
You have been reading a chapter from
TensorFlow Machine Learning Projects
Published in: Nov 2018
Publisher: Packt
ISBN-13: 9781789132212
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image