Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning

You're reading from   Scala for Machine Learning Leverage Scala and Machine Learning to construct and study systems that can learn from data

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781783558742
Length 624 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Hello World! 3. Data Preprocessing 4. Unsupervised Learning 5. Naïve Bayes Classifiers 6. Regression and Regularization 7. Sequential Data Models 8. Kernel Models and Support Vector Machines 9. Artificial Neural Networks 10. Genetic Algorithms 11. Reinforcement Learning 12. Scalable Frameworks A. Basic Concepts Index

Chapter 10. Genetic Algorithms

This chapter introduces the concept of evolutionary computing. Algorithms derived from the theory of evolution are particularly efficient in solving large combinatorial or NP problems. Evolutionary computing has been pioneered by John Holland [10:1] and David Goldberg [10:2]. Their findings should be of interest to anyone eager to learn about the foundation of genetic algorithms (GA) and artificial life.

This chapter covers the following topics:

  • The origin of evolutionary computing
  • The theoretical foundation of genetic algorithms
  • Advantages and limitations of genetic algorithms

From a practical perspective, you will learn how to:

  • Apply genetic algorithms to leverage technical analysis of market price and volume movement to predict future returns
  • Evaluate or estimate the search space
  • Encode solutions in the binary format using either hierarchical or flat addressing
  • Tune some of the genetic operators
  • Create and evaluate fitness functions
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image