Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Programming By Example

You're reading from   R Programming By Example Practical, hands-on projects to help you get started with R

Arrow left icon
Product type Paperback
Published in Dec 2017
Publisher Packt
ISBN-13 9781788292542
Length 470 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Omar Trejo Navarro Omar Trejo Navarro
Author Profile Icon Omar Trejo Navarro
Omar Trejo Navarro
Omar Trejo Navarro Omar Trejo Navarro
Author Profile Icon Omar Trejo Navarro
Omar Trejo Navarro
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Introduction to R 2. Understanding Votes with Descriptive Statistics FREE CHAPTER 3. Predicting Votes with Linear Models 4. Simulating Sales Data and Working with Databases 5. Communicating Sales with Visualizations 6. Understanding Reviews with Text Analysis 7. Developing Automatic Presentations 8. Object-Oriented System to Track Cryptocurrencies 9. Implementing an Efficient Simple Moving Average 10. Adding Interactivity with Dashboards 11. Required Packages

Measuring accuracy with score functions

Now that we have checked our model's assumptions, we turn toward measuring it's predictive power. To measure our predictive accuracy, we will use two methods, one for numerical data (Proportion) and the other for categorical data (Vote). We know that the Vote variable is a transformation from the Proportion variable, meaning that we are measuring the same information in two different ways. However, both numerical and categorical data are frequently encountered in data analysis, and thus we wanted to show both approaches here. Both functions, score_proportions() (numerical) and score_votes() (categorical) receive the data we use for testing and the predictions for each of the observations in the testing data, which come from the model we built in previous sections.

In the numerical case, score_proportions() computes a score using...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image