In this chapter, we introduced different architectures for recurrent neural networks, and pointed out some of their limitations and capabilities. By introducing a naive Markovian model, we compared the efficiency of introducing such complicated architectures. When applied to the text generation problem, we saw that these different architectures had a noticeable improvement in the quality of the predictions. For training networks, we introduced different methods. The classical backpropagation algorithm and other gradient-free methods that are useful to solve black-box optimization problems.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Japan
Slovakia