Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Data Visualization Recipes

You're reading from   R Data Visualization Recipes A cookbook with 65+ data visualization recipes for smarter decision-making

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781788398312
Length 366 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Vitor Bianchi Lanzetta Vitor Bianchi Lanzetta
Author Profile Icon Vitor Bianchi Lanzetta
Vitor Bianchi Lanzetta
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Installation and Introduction FREE CHAPTER 2. Plotting Two Continuous Variables 3. Plotting a Discrete Predictor and a Continuous Response 4. Plotting One Variable 5. Making Other Bivariate Plots 6. Creating Maps 7. Faceting 8. Designing Three-Dimensional Plots 9. Using Theming Packages 10. Designing More Specialized Plots 11. Making Interactive Plots 12. Building Shiny Dashboards

Plotting a scatterplot with shapes and colors


There are several aesthetics coming out from geom_points() that can be changed. Typing ?geom_point into the R console will take you to the function documentation, which comes with a complete list of aesthetics understood by the function. The mandatory ones come in bold.

Names given are nothing but self-explanatory. Besides the mandatory x and y values, optional values range from alpha to stroke. For this particular recipe, we're settling for changes in the shape and colours arguments. Recipe  also aims for similar results using both ggvis and plotly

How to do it...

  1. Change the shape and colour arguments to get a better result:
> library(ggplot2)
> sca1 <- ggplot(data = iris, aes(x = Petal.Length, y = Petal.Width))
> sca1 + geom_point(aes(shape = Species, colour = Species))

Now each iris species is designated by a unique combination of shapes and colors:

Figure 2.3 - Adding shapes and colors to a scatter plot.

  1. plotly can also handle such...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image