Recommender systems or recommendation engines are a popular class of machine learning algorithms widely used today by online retail companies. With historical data about users and product interactions, a recommender system can make profitable/useful recommendations about users and their product preferences.
In the last decade, recommender systems have achieved great success with both online retailers and brick and mortar stores. They have allowed retailers to move away from group campaigns, where a group of people receive a single offer. Recommender systems technology has revolutionized marketing campaigns. Today, retailers offer a customized recommendation to each of their customers. Such recommendations can dramatically increase customer stickiness.
Retailers design and run sales campaigns to promote up-selling and cross-selling. Up-selling is a technique by which retailers try to push high-value products to their customers. Cross-selling is the practice of selling additional products to customers. Recommender systems provide an empirical method to generate recommendations for retailers up-selling and cross-selling campaigns.
Retailers can now make quantitative decisions based on solid statistics and math to improve their businesses. There are a growing number of conferences and journals dedicated to recommender systems technology, which plays a vital role today at top successful companies such as Amazon.com, YouTube, Netflix, LinkedIn, Facebook, TripAdvisor, and IMDb.
Based on the type and volume of available data, recommender systems of varying complexity and increased accuracy can be built. In the previous paragraph, we defined historical data as a user and his product interactions. Let's use this definition to illustrate the different types of data in the context of recommender systems.