Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R Bioinformatics Cookbook

You're reading from   R Bioinformatics Cookbook Use R and Bioconductor to perform RNAseq, genomics, data visualization, and bioinformatic analysis

Arrow left icon
Product type Paperback
Published in Oct 2019
Publisher Packt
ISBN-13 9781789950694
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Dr Dan Maclean Dr Dan Maclean
Author Profile Icon Dr Dan Maclean
Dr Dan Maclean
Dan MacLean Dan MacLean
Author Profile Icon Dan MacLean
Dan MacLean
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Performing Quantitative RNAseq FREE CHAPTER 2. Finding Genetic Variants with HTS Data 3. Searching Genes and Proteins for Domains and Motifs 4. Phylogenetic Analysis and Visualization 5. Metagenomics 6. Proteomics from Spectrum to Annotation 7. Producing Publication and Web-Ready Visualizations 8. Working with Databases and Remote Data Sources 9. Useful Statistical and Machine Learning Methods 10. Programming with Tidyverse and Bioconductor 11. Building Objects and Packages for Code Reuse 12. Other Books You May Enjoy

Plotting and presenting RNAseq data

Plotting the RNAseq data en masse or for individual genes or features is an important step in QC and understanding. In this recipe, we'll see how to make gene count plots in samples of interest, how to create an MA plot that plots counts against fold change and allows us to spot expression-related sample bias, and how to create a volcano plot that plots significance against fold change and allows us to spot the most meaningful changes easily.

Getting ready

In this recipe, we'll use the DESeq2 package, the ggplot2 package, magrittr, and dplyr. We'll use the DESeqDataSet object we created for the modencodefly data in Recipe 2a saved version is in the datasets/ch1/modencode_dds.RDS file in this book's data repository.

How to do it...

  1. Load libraries and create a dataframe of RNAseq results:
library(DESeq2)
library(magrittr)
library(ggplot2)

dds <- readRDS("~/Desktop/r_book/datasets/ch1/modencode_dds.RDS")
  1. Create a boxplot of counts for a single gene, conditioned on "stage":
plotCounts(dds, gene="FBgn0000014", intgroup = "stage", returnData = TRUE) %>%
  ggplot() + aes(stage, count) + geom_boxplot(aes(fill=stage)) + scale_y_log10() + theme_bw()
  1. Create an MA plot with coloring conditioned on significance:
result_df <- results(dds, contrast=c("stage","L2Larvae","L1Larvae"), tidy= TRUE) %>%
  dplyr::mutate(is_significant=padj<0.05)

ggplot(result_df) + aes(baseMean, log2FoldChange) + geom_point(aes(colour=is_significant)) + scale_x_log10() + theme_bw()
  1. Create a volcano plot with coloring conditioned on significance:
ggplot(result_df) + aes(log2FoldChange, -1 * log10(pvalue))  + geom_point(aes(colour=is_significant)) + theme_bw()

How it works...

Step 1 is brief and loads the dataset and libraries we'll need.

In Step 2, we take advantage of a couple of useful parameters in the plotCounts() and results() functions from DESeq2. The returnData flag in plotCounts() will optionally return a tidy dataframe of count information for a given gene in a given condition, hence allowing us to send the data through ggplot() to make a boxplot for an individual gene. The magrittr %>% operator allows us to send the return value of plotCounts() straight to the first positional argument of ggplot() without saving in an intermediate variable.

In Step 3, we use the results() function from DESeq2 to get the results dataframe, which we pipe to dplyr mutate() in order to add a new column called is_significant containing TRUE if the value of the padj column is lower than 0.05. We then use the returned result_df dataframe in a ggplot() command to make a scatter plot of baseMean (count) against log2 fold change, with points colored by the is_significant variable, effectively colored by whether the P value is lower than 0.05 or not.

In Step 4, we use the same result_df dataframe to plot log2fold change against the negative log10 of the 'pvalue' to give a 'volcano' plot of the relationship between P and differential expression level:

The preceding three plots are the combined resultant output of these three ggplot() commands.

You have been reading a chapter from
R Bioinformatics Cookbook
Published in: Oct 2019
Publisher: Packt
ISBN-13: 9781789950694
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image