Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
PyTorch 1.x Reinforcement Learning Cookbook

You're reading from   PyTorch 1.x Reinforcement Learning Cookbook Over 60 recipes to design, develop, and deploy self-learning AI models using Python

Arrow left icon
Product type Paperback
Published in Oct 2019
Publisher Packt
ISBN-13 9781838551964
Length 340 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Yuxi (Hayden) Liu Yuxi (Hayden) Liu
Author Profile Icon Yuxi (Hayden) Liu
Yuxi (Hayden) Liu
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started with Reinforcement Learning and PyTorch 2. Markov Decision Processes and Dynamic Programming FREE CHAPTER 3. Monte Carlo Methods for Making Numerical Estimations 4. Temporal Difference and Q-Learning 5. Solving Multi-armed Bandit Problems 6. Scaling Up Learning with Function Approximation 7. Deep Q-Networks in Action 8. Implementing Policy Gradients and Policy Optimization 9. Capstone Project – Playing Flappy Bird with DQN 10. Other Books You May Enjoy

Setting up the Mountain Car environment playground

The TD method can learn the Q-function during an episode but is not scalable. For example, the number of states in a chess game is around 1,040, and 1,070 in a Go game. Moreover, it seems infeasible to learn the values for continuous state using the TD method. Hence, we need to solve such problems using function approximation (FA), which approximates the state space using a set of features.

In this first recipe, we will begin by getting familiar with the Mountain Car environment, which we will solve with the help of FA methods in upcoming recipes.

Mountain Car (https://gym.openai.com/envs/MountainCar-v0/) is a typical Gym environment with continuous states. As shown in the following diagram, its goal is to get the car to the top of the hill:

On a one-dimensional track, the car is positioned between -1.2 (leftmost) and 0.6 (rightmost...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image