Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Machine Learning

You're reading from   Python Machine Learning Learn how to build powerful Python machine learning algorithms to generate useful data insights with this data analysis tutorial

Arrow left icon
Product type Paperback
Published in Sep 2015
Publisher Packt
ISBN-13 9781783555130
Length 454 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Sebastian Raschka Sebastian Raschka
Author Profile Icon Sebastian Raschka
Sebastian Raschka
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Giving Computers the Ability to Learn from Data FREE CHAPTER 2. Training Machine Learning Algorithms for Classification 3. A Tour of Machine Learning Classifiers Using Scikit-learn 4. Building Good Training Sets – Data Preprocessing 5. Compressing Data via Dimensionality Reduction 6. Learning Best Practices for Model Evaluation and Hyperparameter Tuning 7. Combining Different Models for Ensemble Learning 8. Applying Machine Learning to Sentiment Analysis 9. Embedding a Machine Learning Model into a Web Application 10. Predicting Continuous Target Variables with Regression Analysis 11. Working with Unlabeled Data – Clustering Analysis 12. Training Artificial Neural Networks for Image Recognition 13. Parallelizing Neural Network Training with Theano Index

Chapter 1. Giving Computers the Ability to Learn from Data

In my opinion, machine learning, the application and science of algorithms that makes sense of data, is the most exciting field of all the computer sciences! We are living in an age where data comes in abundance; using the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Thanks to the many powerful open source libraries that have been developed in recent years, there has probably never been a better time to break into the machine learning field and learn how to utilize powerful algorithms to spot patterns in data and make predictions about future events.

In this chapter, we will learn about the main concepts and different types of machine learning. Together with a basic introduction to the relevant terminology, we will lay the groundwork for successfully using machine learning techniques for practical problem solving.

In this chapter, we will cover the following topics:

  • The general concepts of machine learning
  • The three types of learning and basic terminology
  • The building blocks for successfully designing machine learning systems
  • Installing and setting up Python for data analysis and machine learning
You have been reading a chapter from
Python Machine Learning
Published in: Sep 2015
Publisher: Packt
ISBN-13: 9781783555130
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image