Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python for Finance

You're reading from   Python for Finance Apply powerful finance models and quantitative analysis with Python

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher
ISBN-13 9781787125698
Length 586 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Yuxing Yan Yuxing Yan
Author Profile Icon Yuxing Yan
Yuxing Yan
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Python Basics FREE CHAPTER 2. Introduction to Python Modules 3. Time Value of Money 4. Sources of Data 5. Bond and Stock Valuation 6. Capital Asset Pricing Model 7. Multifactor Models and Performance Measures 8. Time-Series Analysis 9. Portfolio Theory 10. Options and Futures 11. Value at Risk 12. Monte Carlo Simulation 13. Credit Risk Analysis 14. Exotic Options 15. Volatility, Implied Volatility, ARCH, and GARCH Index

Estimating fat tails

One of the important properties of a normal distribution is that we could use mean and standard deviation, the first two moments, to fully define the whole distribution. For n returns of a security, its first four moments are defined in equation (1). The mean or average is defined as follows:

Estimating fat tails

Its (sample) variance is defined by the following equation. The standard deviation, that is, σ, is the squared root of the variance:

Estimating fat tails

The skewness defined by the following formula indicates whether the distribution is skewed to the left or to the right. For a symmetric distribution, its skewness is zero:

Estimating fat tails

The kurtosis reflects the impact of extreme values because of its power of four. There are two types of definitions with and without minus three; refer to the following two equations. The reason behind the deduction of three in equation (4B), is that for a normal distribution, its kurtosis based on equation (4A) is three:

Estimating fat tails

Some books distinguish these two equations by calling equation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image