Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning Cookbook

You're reading from   Python Deep Learning Cookbook Over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781787125193
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Indra den Bakker Indra den Bakker
Author Profile Icon Indra den Bakker
Indra den Bakker
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks 2. Feed-Forward Neural Networks FREE CHAPTER 3. Convolutional Neural Networks 4. Recurrent Neural Networks 5. Reinforcement Learning 6. Generative Adversarial Networks 7. Computer Vision 8. Natural Language Processing 9. Speech Recognition and Video Analysis 10. Time Series and Structured Data 11. Game Playing Agents and Robotics 12. Hyperparameter Selection, Tuning, and Neural Network Learning 13. Network Internals 14. Pretrained Models

Building a multi-layer neural network


What we've created in the recipe is actually the simplest form of an FNN: a neural network where the information flows only in one direction. For our next recipe, we will extend the number of hidden layers from one to multiple layers. Adding additional layers increases the power of a network to learn complex non-linear patterns. 

Figure 2.7: Two-layer neural network with i input variables, n hidden units, and m hidden units respectively, and a single output unit

As you can see in Figure 2-7, by adding an additional layer the number of connections (weights), also called trainable parameters, increases exponentially. In the next recipe, we will create a network with two hidden layers to predict wine quality. This is a regression task, so we will be using a linear activation for the output layer. For the hidden layers, we use ReLU activation functions. This recipe uses the Keras framework to implement the feed-forward network.

How to do it...

  1. We start by import...
You have been reading a chapter from
Python Deep Learning Cookbook
Published in: Oct 2017
Publisher: Packt
ISBN-13: 9781787125193
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image