Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning Cookbook

You're reading from   Python Deep Learning Cookbook Over 75 practical recipes on neural network modeling, reinforcement learning, and transfer learning using Python

Arrow left icon
Product type Paperback
Published in Oct 2017
Publisher Packt
ISBN-13 9781787125193
Length 330 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Indra den Bakker Indra den Bakker
Author Profile Icon Indra den Bakker
Indra den Bakker
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Programming Environments, GPU Computing, Cloud Solutions, and Deep Learning Frameworks 2. Feed-Forward Neural Networks FREE CHAPTER 3. Convolutional Neural Networks 4. Recurrent Neural Networks 5. Reinforcement Learning 6. Generative Adversarial Networks 7. Computer Vision 8. Natural Language Processing 9. Speech Recognition and Video Analysis 10. Time Series and Structured Data 11. Game Playing Agents and Robotics 12. Hyperparameter Selection, Tuning, and Neural Network Learning 13. Network Internals 14. Pretrained Models

Introduction


The focus of this chapter is to provide solutions to common implementation problems for FNN and other network topologies. The techniques discussed in this chapter also apply to the following chapters.

FNNs are networks where the information only moves in one direction and does not cycle (as we will see in Chapter 4, Recurrent Neural Networks). FNNs are mainly used for supervised learning where the data is not sequential or time-dependent, for example for general classification and regression tasks. We will start by introducing a perceptron and we will show how to implement a perceptron with NumPy. A perceptron demonstrates the mechanics of a single unit. Next, we will increase the complexity by increasing the number of units and introduce single-layer and multi-layer neural networks. The high number of units, in combination with a high number of layers, gives the depth of the architecture and is responsible for the name deep learning. 

You have been reading a chapter from
Python Deep Learning Cookbook
Published in: Oct 2017
Publisher: Packt
ISBN-13: 9781787125193
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image