Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Deep Learning

You're reading from   Python Deep Learning Next generation techniques to revolutionize computer vision, AI, speech and data analysis

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781786464453
Length 406 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (4):
Arrow left icon
Peter Roelants Peter Roelants
Author Profile Icon Peter Roelants
Peter Roelants
Daniel Slater Daniel Slater
Author Profile Icon Daniel Slater
Daniel Slater
Valentino Zocca Valentino Zocca
Author Profile Icon Valentino Zocca
Valentino Zocca
Gianmario Spacagna Gianmario Spacagna
Author Profile Icon Gianmario Spacagna
Gianmario Spacagna
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Machine Learning – An Introduction FREE CHAPTER 2. Neural Networks 3. Deep Learning Fundamentals 4. Unsupervised Feature Learning 5. Image Recognition 6. Recurrent Neural Networks and Language Models 7. Deep Learning for Board Games 8. Deep Learning for Computer Games 9. Anomaly Detection 10. Building a Production-Ready Intrusion Detection System Index

Pooling layers


In the previous section, we have derived the formula for the size for each slice in a convolutional layer. As we discussed, one of the advantages of convolutional layers is that they reduce the number of parameters needed, improving performance and reducing over-fitting. After a convolutional operation, another operation is often performed—pooling. The most classical example is called max-pooling, and this means creating (2 x 2) grids on each slice, and picking the neuron with the maximum activation value in each grid, discarding the rest. It is immediate that such an operation discards 75% of the neurons, keeping only the neurons that contribute the most in each cell.

There are two parameters for each pooling layer, similar to the stride and padding parameters found in convolutional layers, and they are the size of the cell and the stride. One typical choice is to choose a cell size of 2 and a stride of 2, though it is not uncommon to pick a cell size of 3 and a stride of...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image