Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Machine Learning Cookbook

You're reading from   Practical Machine Learning Cookbook Supervised and unsupervised machine learning simplified

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher Packt
ISBN-13 9781785280511
Length 570 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Atul Tripathi Atul Tripathi
Author Profile Icon Atul Tripathi
Atul Tripathi
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Introduction to Machine Learning FREE CHAPTER 2. Classification 3. Clustering 4. Model Selection and Regularization 5. Nonlinearity 6. Supervised Learning 7. Unsupervised Learning 8. Reinforcement Learning 9. Structured Prediction 10. Neural Networks 11. Deep Learning 12. Case Study - Exploring World Bank Data 13. Case Study - Pricing Reinsurance Contracts 14. Case Study - Forecast of Electricity Consumption

Introduction

Subset selection: The use of labeled examples to induce a model that classifies objects into a finite set of known classes is one of the main challenges of supervised classification in machine learning. Vectors of numeric or nominal features are used to describe the various examples. In the feature subset selection problem, a learning algorithm is faced with the problem of selecting some subset of features upon which to focus its attention, while ignoring the rest.

When fitting a linear regression model, a subset of variables that best describe the data are of interest. There are a number of different ways the best subset, applying a number of different strategies, can be adopted when searching for a variables set. If there are m variables and the best regression model consists of p variables, p≤m, then a more general approach to pick the best subset might be to try all possible combinations of p variables and select the model that fits the data the best.

However, there...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image