Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Practical Machine Learning

You're reading from   Practical Machine Learning Learn how to build Machine Learning applications to solve real-world data analysis challenges with this Machine Learning book – packed with practical tutorials

Arrow left icon
Product type Paperback
Published in Jan 2016
Publisher Packt
ISBN-13 9781784399689
Length 468 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sunila Gollapudi Sunila Gollapudi
Author Profile Icon Sunila Gollapudi
Sunila Gollapudi
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Introduction to Machine learning FREE CHAPTER 2. Machine learning and Large-scale datasets 3. An Introduction to Hadoop's Architecture and Ecosystem 4. Machine Learning Tools, Libraries, and Frameworks 5. Decision Tree based learning 6. Instance and Kernel Methods Based Learning 7. Association Rules based learning 8. Clustering based learning 9. Bayesian learning 10. Regression based learning 11. Deep learning 12. Reinforcement learning 13. Ensemble learning 14. New generation data architectures for Machine learning Index

Instance-based learning (IBL)


The IBL technique approaches learning by simply storing the provided training data and using it as a reference for predicting/determining the behavior of a new query. As learned in Chapter 1, Introduction to Machine learning, instances are nothing but subsets of datasets. The instance-based learning model works on an identified instance or groups of instances that are critical to the problem. The results across instances are compared and can include an instance of new data as well. This comparison uses a particular similarity measure to find the best match and predict. Since it uses historical data stored in memory, this learning technique is also called memory-based or case-based learning. Here, the focus is on the representation of the instances and similarity measures for comparison between them.

Every time a new query instance is received for processing, a set of similar, related instances are retrieved from memory, and then this data is used to classify...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image