Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
OpenGL 4 Shading Language Cookbook

You're reading from   OpenGL 4 Shading Language Cookbook Build high-quality, real-time 3D graphics with OpenGL 4.6, GLSL 4.6 and C++17

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789342253
Length 472 pages
Edition 3rd Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
David A Wolff David A Wolff
Author Profile Icon David A Wolff
David A Wolff
David Wolff David Wolff
Author Profile Icon David Wolff
David Wolff
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with GLSL FREE CHAPTER 2. Working with GLSL Programs 3. The Basics of GLSL Shaders 4. Lighting and Shading 5. Using Textures 6. Image Processing and Screen Space Techniques 7. Using Geometry and Tessellation Shaders 8. Shadows 9. Using Noise in Shaders 10. Particle Systems and Animation 11. Using Compute Shaders 12. Other Books You May Enjoy

Simulating refraction with cube maps


Objects that are transparent cause the light rays that pass through them to bend slightly at the interface between the object and the surrounding environment. This effect is called refraction. When rendering transparent objects, we simulate that effect by using an environment map and mapping the environment onto the object is such a way as to mimic the way that light would pass through the object. In other words, we can trace the rays from the viewer, through the object (bending in the process), and along to the environment. Then, we can use that ray intersection as the color for the object.

As in the previous recipe, we'll do this using a cube map for the environment. We'll trace rays from the viewer position, through the object, and finally intersect with the cube map.

The process of refraction is described by Snell's law, which defines the relationship between the angle of incidence and the angle of refraction:

Snell's law describes the angle of incidence...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image