Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Neural Network Programming with TensorFlow

You're reading from   Neural Network Programming with TensorFlow Unleash the power of TensorFlow to train efficient neural networks

Arrow left icon
Product type Paperback
Published in Nov 2017
Publisher Packt
ISBN-13 9781788390392
Length 274 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Manpreet Singh Ghotra Manpreet Singh Ghotra
Author Profile Icon Manpreet Singh Ghotra
Manpreet Singh Ghotra
Rajdeep Dua Rajdeep Dua
Author Profile Icon Rajdeep Dua
Rajdeep Dua
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Maths for Neural Networks 2. Deep Feedforward Networks FREE CHAPTER 3. Optimization for Neural Networks 4. Convolutional Neural Networks 5. Recurrent Neural Networks 6. Generative Models 7. Deep Belief Networking 8. Autoencoders 9. Research in Neural Networks 10. Getting started with TensorFlow

Effect of the number of neurons in an RBM layer in a DBN


Let's look at how changing the number of neurons in an RBM layer affects the test set's accuracy:

An RBM layer with 512 neurons

The following is the output of a DBN with 512 neurons in an RBM layer. The reconstruction loss has come down and the test set's accuracy has come down as well:

Reconstruction loss: 0.128517: 100%|██████████| 5/5 [01:32<00:00, 19.25s/it]
Start deep belief net finetuning...
Tensorboard logs dir for this run is /home/ubuntu/.yadlt/logs/run55
Accuracy: 0.0758: 100%|██████████| 1/1 [00:06<00:00, 6.40s/it]
Test set accuracy: 0.0689999982715

Notice how the accuracy and test set accuracy both have come down. This means increasing the number of neurons doesn't necessarily improve the accuracy.

An RBM layer with 128 neurons

A 128-neuron RBM layer leads to higher test set accuracy but a lower overall accuracy:

Reconstruction loss: 0.180337: 100%|██████████| 5/5 [00:32<00:00, 6.44s/it]
 Start deep belief...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image