Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing with Java

You're reading from   Natural Language Processing with Java Techniques for building machine learning and neural network models for NLP

Arrow left icon
Product type Paperback
Published in Jul 2018
Publisher
ISBN-13 9781788993494
Length 318 pages
Edition 2nd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Ashish Bhatia Ashish Bhatia
Author Profile Icon Ashish Bhatia
Ashish Bhatia
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to NLP FREE CHAPTER 2. Finding Parts of Text 3. Finding Sentences 4. Finding People and Things 5. Detecting Part of Speech 6. Representing Text with Features 7. Information Retrieval 8. Classifying Texts and Documents 9. Topic Modeling 10. Using Parsers to Extract Relationships 11. Combined Pipeline 12. Creating a Chatbot 13. Other Books You May Enjoy

Using APIs to classify text


We will use OpenNLP, Stanford API, and LingPipe to demonstrate the various classification approaches. We will spend more time with LingPipe as it offers several different classification approaches.

Using OpenNLP

The DocumentCategorizer interface specifies methods that can be used to support the classification process. The interface is implemented by the DocumentCategorizerME class. This class will classify text into predefined categories using a maximum-entropy framework. In this section, we will do the following:

  • Demonstrate how to train the model
  • Illustrate how the model can be used

Training an OpenNLP classification model

First, we have to train our model because OpenNLP does not have prebuilt models. This process consists of creating a file of training data and then using the DocumentCategorizerME model to perform the actual training. The model that is created is typically saved in a file for later use.

The training file format consists of a series of lines where...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image