Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Natural Language Processing and Computational Linguistics

You're reading from   Natural Language Processing and Computational Linguistics A practical guide to text analysis with Python, Gensim, spaCy, and Keras

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788838535
Length 306 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Bhargav Srinivasa-Desikan Bhargav Srinivasa-Desikan
Author Profile Icon Bhargav Srinivasa-Desikan
Bhargav Srinivasa-Desikan
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. What is Text Analysis? FREE CHAPTER 2. Python Tips for Text Analysis 3. spaCy's Language Models 4. Gensim – Vectorizing Text and Transformations and n-grams 5. POS-Tagging and Its Applications 6. NER-Tagging and Its Applications 7. Dependency Parsing 8. Topic Models 9. Advanced Topic Modeling 10. Clustering and Classifying Text 11. Similarity Queries and Summarization 12. Word2Vec, Doc2Vec, and Gensim 13. Deep Learning for Text 14. Keras and spaCy for Deep Learning 15. Sentiment Analysis and ChatBots 16. Other Books You May Enjoy

Summary

We've had a look at the incredible power of text analysis, and the kind of things we can do with it as well as the kind of tools we would be using to take advantage of this. Data has become increasingly easy for us to access, and with the growth of social media, we have continuous access to both new data, as well as standardized annotated datasets.

This book will aim at walking the reader through the tools and knowledge required to conduct textual analysis on their own personal data or own standardized datasets. We will discuss methods to access and clean data to make it ready for preprocessing, as well as how to explore and organize our textual data. Classification and clustering are two other commonly conducted text processing tasks, and we will figure out how to perform this as well, before finishing up with how to use deep learning for text.

In the next chapter, we will introduce how and why Python is the right choice for our purposes, as well as discuss some Python tricks and tips to help us with text analysis.

You have been reading a chapter from
Natural Language Processing and Computational Linguistics
Published in: Jun 2018
Publisher: Packt
ISBN-13: 9781788838535
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image