Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Modern Big Data Processing with Hadoop

You're reading from   Modern Big Data Processing with Hadoop Expert techniques for architecting end-to-end big data solutions to get valuable insights

Arrow left icon
Product type Paperback
Published in Mar 2018
Publisher Packt
ISBN-13 9781787122765
Length 394 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Authors (3):
Arrow left icon
Manoj R Patil Manoj R Patil
Author Profile Icon Manoj R Patil
Manoj R Patil
Prashant Shindgikar Prashant Shindgikar
Author Profile Icon Prashant Shindgikar
Prashant Shindgikar
V Naresh Kumar V Naresh Kumar
Author Profile Icon V Naresh Kumar
V Naresh Kumar
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Enterprise Data Architecture Principles FREE CHAPTER 2. Hadoop Life Cycle Management 3. Hadoop Design Consideration 4. Data Movement Techniques 5. Data Modeling in Hadoop 6. Designing Real-Time Streaming Data Pipelines 7. Large-Scale Data Processing Frameworks 8. Building Enterprise Search Platform 9. Designing Data Visualization Solutions 10. Developing Applications Using the Cloud 11. Production Hadoop Cluster Deployment

Apache Storm

Apache Storm is a free and open source distributed real-time stream processing framework. At the time of writing this book, the stable release version of Apache Storm is 1.0.5. The Storm framework is predominantly written in the Clojure programming language. Originally, it was created and developed by Nathan Marz and the team at Backtype. The project was later acquired by Twitter.

During one of his talks on the Storm framework, Nathan Marz talked about stream processing applications using any framework, such as Storm. These applications involved queues and worker threads. Some of the data source threads write messages to queues and other threads pick up these messages and write to target data stores. The main drawback here is that source threads and targets threads do not match the data load of each other and this results in data pileup. It also results in data loss...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image