Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Microsoft Power BI Cookbook

You're reading from   Microsoft Power BI Cookbook Convert raw data into business insights with updated techniques, use cases, and best practices

Arrow left icon
Product type Paperback
Published in Jul 2024
Publisher Packt
ISBN-13 9781835464274
Length 598 pages
Edition 3rd Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Greg Deckler Greg Deckler
Author Profile Icon Greg Deckler
Greg Deckler
Brett Powell Brett Powell
Author Profile Icon Brett Powell
Brett Powell
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Installing and Licensing Power BI Tools FREE CHAPTER 2. Accessing, Retrieving, and Transforming Data 3. Building a Power BI Semantic Model 4. Authoring Power BI Reports 5. Working in the Power BI Service 6. Getting Serious About Date Intelligence 7. Parameterizing Power BI Solutions 8. Implementing Dynamic User-Based Visibility in Power BI 9. Applying Advanced Analytics and Custom Visuals 10. Enhancing and Optimizing Existing Power BI Solutions 11. Deploying and Distributing Power BI Content 12. Integrating Power BI with Other Applications 13. Working with Premium and Microsoft Fabric 14. Other Books You May Enjoy
15. Index

Creating a Data Warehouse

Gartner defines a data warehouse as follows:

A data warehouse is a storage architecture designed to hold data extracted from transaction systems, operational data stores, and external sources. The warehouse then combines that data in an aggregate, summary form suitable for enterprise-wide data analysis and reporting for predefined business needs.”

Data warehouses have been a staple of business intelligence architectures for decades given their ability to deliver a central and single source of truth for use by a variety of applications and use cases. By handling data quality and integration needs in powerful upstream tools like Azure Data Factory pipelines and producing a consolidated set of dimension and fact tables with surrogate keys for relationships/joins via familiar SQL queries and support for historical tracking, a well-designed and managed data warehouse remains a highly valuable asset.

Regardless of the specific history...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime