Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Spark for Data Science

You're reading from   Mastering Spark for Data Science Lightning fast and scalable data science solutions

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781785882142
Length 560 pages
Edition 1st Edition
Arrow right icon
Authors (5):
Arrow left icon
David George David George
Author Profile Icon David George
David George
Matthew Hallett Matthew Hallett
Author Profile Icon Matthew Hallett
Matthew Hallett
Antoine Amend Antoine Amend
Author Profile Icon Antoine Amend
Antoine Amend
Andrew Morgan Andrew Morgan
Author Profile Icon Andrew Morgan
Andrew Morgan
Albert Bifet Albert Bifet
Author Profile Icon Albert Bifet
Albert Bifet
+1 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. The Big Data Science Ecosystem FREE CHAPTER 2. Data Acquisition 3. Input Formats and Schema 4. Exploratory Data Analysis 5. Spark for Geographic Analysis 6. Scraping Link-Based External Data 7. Building Communities 8. Building a Recommendation System 9. News Dictionary and Real-Time Tagging System 10. Story De-duplication and Mutation 11. Anomaly Detection on Sentiment Analysis 12. TrendCalculus 13. Secure Data 14. Scalable Algorithms

Chapter 14. Scalable Algorithms

In this chapter, we discuss the challenges associated with writing efficient and scalable analytics running on Spark. We will start by introducing the reader to the general concepts of distributed parallelization and scalability and how they relate to Spark. We will recap over Spark's distributed architecture giving the reader an understanding of its underlying principles and how this supports the parallel processing paradigm. We will learn about the characteristics of scalable analytics and the elements of Spark that underpin these (for example, RDD, combineByKey, and GraphX).

Next, we will learn about why sometimes even basic algorithms, despite working at small scale, will often fail in big data. We'll see how to avoid issues when writing Spark jobs that run over massive datasets, including an example using mean/variance. The reader will learn about the structure of algorithms and how to write custom data science analytics that scale...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image