Developing strategies to solve the Kuka environment
The object grasping problem in the environment is a hard-exploration problem, meaning that it is unlikely to stumble upon the sparse reward that the agent receives at the end upon grasping the object. Reducing the vertical speed as we will do will make is a bit easier. Still, let's refresh our minds about what strategies we have covered to address these kinds of problems:
- Reward shaping is one of the most common machine teaching strategies that we discussed earlier. In some problems, incentivizing the agent towards the goal is very straightforward. In many problems, though, it can be quite painful. So, unless there is an obvious way of doing so, crafting the reward function may just take too much time (and expertise about the problem). Also notice that the original reward function has a component to penalize the distance between the gripper and the object, so the reward is already shaped to some extent. We will not go...