Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Reinforcement Learning with Python

You're reading from   Mastering Reinforcement Learning with Python Build next-generation, self-learning models using reinforcement learning techniques and best practices

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781838644147
Length 544 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Enes Bilgin Enes Bilgin
Author Profile Icon Enes Bilgin
Enes Bilgin
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: Reinforcement Learning Foundations
2. Chapter 1: Introduction to Reinforcement Learning FREE CHAPTER 3. Chapter 2: Multi-Armed Bandits 4. Chapter 3: Contextual Bandits 5. Chapter 4: Makings of a Markov Decision Process 6. Chapter 5: Solving the Reinforcement Learning Problem 7. Section 2: Deep Reinforcement Learning
8. Chapter 6: Deep Q-Learning at Scale 9. Chapter 7: Policy-Based Methods 10. Chapter 8: Model-Based Methods 11. Chapter 9: Multi-Agent Reinforcement Learning 12. Section 3: Advanced Topics in RL
13. Chapter 10: Introducing Machine Teaching 14. Chapter 11: Achieving Generalization and Overcoming Partial Observability 15. Chapter 12: Meta-Reinforcement Learning 16. Chapter 13: Exploring Advanced Topics 17. Section 4: Applications of RL
18. Chapter 14: Solving Robot Learning 19. Chapter 15: Supply Chain Management 20. Chapter 16: Personalization, Marketing, and Finance 21. Chapter 17: Smart City and Cybersecurity 22. Chapter 18: Challenges and Future Directions in Reinforcement Learning 23. Other Books You May Enjoy

RL application areas and success stories

RL is not a new field. Many of the fundamental ideas in RL were introduced in the context of dynamic programming and optimal control throughout the past seven decades. However, successful RL implementations have taken off recently thanks to the breakthroughs in deep learning and more powerful computational resources. In this section, we talk about some of the application areas of RL together with some famous success stories. We will go deeper into the algorithms behind these implementations in the following chapters.

Games

Board and video games have been a research lab for RL, leading to many famous success stories in this area. The reasons of why games make good RL problems are as follows:

  • Games are naturally about sequential decision-making with uncertainty involved.
  • They are available as computer software, making it possible for RL models to flexibly interact with them and generate billions of data points for training. Also, trained RL models are then also tested in the same computer environment. This is as opposed to many physical processes for which it is too complex to create accurate and fast simulators.
  • The natural benchmark in games are the best human players, making it an appealing battlefield for AI vs. human comparisons.

After this introduction, let's go into some of the most exciting RL work that made to the headlines.

TD-Gammon

The first famous RL implementation is TD-Gammon, a model that learned how to play super-human level backgammon - a two-player board game with 1020 possible configurations. The model was developed by Gerald Tesauro at the IBM Research in 1992. TD-Gammon was so successful that it created a great excitement in the backgammon community back then with the novel strategies it taught humans. Many methods used in that model (temporal-difference, self-play, use of neural networks) are still at the center of the modern RL implementations.

Super-human performance in Atari games

One of the most impressive and seminal works in RL was that of Volodymry Mnih and his colleagues at Google DeepMind that came out in 2015. The researchers trained RL agents that learned how to play Atari games better than humans by only using screen input and game scores, without any hand-crafted or game-specific features through deep neural networks. They named their algorithm deep Q-network (DQN), which is one of the most popular RL algorithms today. 

Beating the world champions in Go, chess and Shogi

The RL implementation that perhaps brought the most fame to RL was Google DeepMind's AlphaGo. It was the first computer program to beat a professional player in the ancient board game of Go in 2015, and later the world champion Lee Sedol in 2016. This story was later turned into a documentary film with the same name. The AlphaGo model was trained using data from human expert moves as well as with RL through self-play. The later version, AlphaGo Zero reached a performance of defeating the original AlphaGo 100-0, which was trained via just self-play and without any human knowledge inserted to the model. Finally, the company released AlphaZero in 2018 that was able to learn the games of chess, shogi (Japanese chess) and Go to become the strongest player in history for each, without any prior information about the games except the game rules. AlphaZero reached this performance after only several hours of training on tensor processing units (TPUs). AlphaZero's unconventional strategies were praised by world-famous players such as Garry Kasparov (chess) and Yoshiharu Habu (shogi).

Victories in complex strategy games

RL's success later went beyond just Atari and board games, into Mario, Quake III Arena, Capture the Flag, Dota 2 and StarCraft II. Some of these games are exceptionally challenging for AI programs with the need for strategic planning, involvement of game theory between multiple decision makers, imperfect information and large number of possible actions and game states. Due to this complexity, it took enormous amount of resources to train those models. For example, OpenAI trained the Dota 2 model using 256 GPUs and 128,000 CPU cores for months, giving 900 years of game experience to the model per day. Google DeepMind's AlphaStar, which defeated top professional players in StarCraft II in 2019, required training hundreds of copies of a sophisticated model with 200 years of real-time game experience for each, although those models were initially trained on real game data of human players.

Robotics and autonomous systems

Robotics and physical autonomous systems are challenging fields for RL. This is because RL agents are trained in simulation to gather enough data; but a simulation environment cannot reflect all the complexities of the real-world. Therefore, those agents often fail in the actual task, which is especially problematic if the task is safety critical. In addition, these applications often involve continuous actions, which require different types of algorithms than DQN. Despite these challenges, on the other hand, there are numerous RL success stories in these fields. In addition, there is a lot of research on using RL in exciting applications such autonomous ground and air vehicles.

Elevator optimization

An early success story that proved RL can create value for real-world applications was about elevator optimization in 1996 by Robert Crites and Andrew Barto. The researchers developed an RL model to optimize elevator dispatching in a 10-story building with 4 elevator cars. This was a much more challenging problem than the earlier TD-gammon due to the possible number of situations the model can encounter, partial observability (the number of people waiting at different floors was not observable to the RL model), and the possible number of decisions to choose from. The RL model substantially improved the best elevator control heuristics of the time across various metrics such as average passenger wait-time and travel-time.

Humanoid robots and dexterous manipulation

In 2017, Nicolas Heess et al. of Google DeepMind were able to teach different types of bodies (humanoid ) various locomotion behaviors such as how to run, jump in a computer simulation. In 2018, Marcin Andrychowicz et al. of OpenAI trained a five-fingered humanoid hand that is able to manipulate a block from an initial configuration to a goal configuration. And in 2019, again researchers from OpenAI, Ilge Akkaya et al. were able to train a robot hand that can solve a Rubik's cube.

Figure 1.1 – OpenAI's RL model that solved Rubik's cube is trained in simulation (a) 
and deployed on a physical robot (b)

Figure 1.1 – OpenAI's RL model that solved Rubik's cube is trained in simulation (a) and deployed on a physical robot (b). (Image source: OpenAI Blog, 2019)

Both of the latter two models were trained in simulation and successfully transferred to physical implementation using domain randomization techniques (Figure 1.1).

Emergency response robots 

In the aftermath of a disaster, using robots could be extremely helpful especially when operating in dangerous conditions. For example, robots could locate survivors in damaged structures, turn off gas valves Creating intelligent robots that operate autonomously would allow to scale emergency response operations and provide the necessary support to many more people than it is possible with manual operations.

Self-driving vehicles

Although a full self-driving car is too complex to solve with an RL model alone, some of the tasks could be handled by RL. For example, we can train RL agents for self-parking, and making decisions for when and how to pass a car on a highway. Similarly, we can use RL agents to execute certain tasks in an autonomous drone, such as how to take off, land, avoid collusions

Info

In a phenomenal success story that came in late 2020, Loon and Google AI deployed a superpressure balloon in the stratosphere that is controlled by a RL agent. You can read about this story at https://bit.ly/33RqQCh.

As in many areas, we see RL appearing as a competitive alternative to traditional controllers for vehicles.

Supply chain

Many decisions in supply chain are of sequential nature and involve uncertainty, for which RL is a natural approach. Some of these problems are as follows:

  • Inventory planning is about deciding when to place a purchase order to replenish the inventory of an item and at what quantity. Ordering less than necessary causes shortages and ordering more than necessary causes excess inventory costs, product spoilage and inventory removal at reduced prices. RL models are used to make inventory planning decisions to decrease the cost of these operations.
  • Bin packing is a common problem in manufacturing and supply chain where items arriving at a station are placed into containers to minimize the number of containers used, and to ensure smooth operations in the facility. This is a difficult problem that can be solved using RL.

Manufacturing

An area where RL will have a great impact is manufacturing, where a lot of manual tasks can potentially be carried out by autonomous agents at reduced costs and increased quality. As a result, many companies are looking into bringing RL to their manufacturing environment. Here are some example RL applications in manufacturing.

  • Machine calibration is a task that is often handled by human experts in manufacturing environments, which is inefficient and error prone. RL models are often capable of achieving these tasks at reduced costs and increased quality.
  • Chemical plant operations often involve sequential decision making, which are often handled by human experts or heuristics. RL agents are shown to be effectively controlling these processes with better final product quality and less equipment wear and tear.
  • Equipment maintenance requires planning down-times to avoid costly breakdowns. RL models can effectively balance the cost of downtime and cost of a potential breakdown.
  • In addition to the examples above, many successful RL applications in robotics can be transferred to manufacturing solutions.

Personalization and recommender systems

Personalization is arguably the area where RL has created the most business value so far. Big tech companies provide personalization as a service with RL algorithms running under the hood. Here are some examples.

  • In advertising, the order and content of promotional materials delivered to (potential) customers is a sequential decision-making problem that can be solved using RL, leading to increased customer satisfaction and conversion.
  • News recommendation is an area where Microsoft News has famously applied RL and increased visitor engagement by improving the article selection and the order of recommendation.
  • Personalization of the artwork that you see for the titles on Netflix is handled by RL algorithms. With that, the viewers better identify the titles relevant to their interests.
  • Personalized healthcare is becoming increasingly important as it provides more effective treatments at reduced costs. There are many successful applications of RL picking the right treatment for patients.

Smart cities

There are many areas RL can help improve how cities operate. Below are couple examples.

  • In a traffic network with multiple intersections, the traffic lights should work in harmony to ensure the smooth flow of the traffic. It turns out that this problem can be modeled as a multi-agent RL problem and improve the existing systems for traffic light control.
  • Balancing the generation and demand in electricity grids in real-time is an important problem to ensure the grid safety. One way of achieving this is to control the demand, such as charging electric vehicles and turning on air conditioning systems when there is enough generation, without sacrificing the service quality, to which RL methods have successfully been applied.

This list can go on for pages, but it should be enough to demonstrate the huge potential in RL. What Andrew Ng, a pioneer in the field, says about AI is very much true for RL as well.

Just as electricity transformed almost everything 100 years ago, today I actually have a hard time thinking of an industry that I don't think AI will transform in the next several years. ("Andrew Ng: Why AI is the new electricity;" Stanford News; March 15, 2017)

RL today is only at the beginning of its prime time; and you are making a great investment by putting effort to understand what RL is and what it has to offer. Now, it is time to get more technical and formally define the elements in a RL problem.

You have been reading a chapter from
Mastering Reinforcement Learning with Python
Published in: Dec 2020
Publisher: Packt
ISBN-13: 9781838644147
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image