Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering PyTorch

You're reading from   Mastering PyTorch Create and deploy deep learning models from CNNs to multimodal models, LLMs, and beyond

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781801074308
Length 558 pages
Edition 2nd Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Ashish Ranjan Jha Ashish Ranjan Jha
Author Profile Icon Ashish Ranjan Jha
Ashish Ranjan Jha
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Overview of Deep Learning Using PyTorch 2. Deep CNN Architectures FREE CHAPTER 3. Combining CNNs and LSTMs 4. Deep Recurrent Model Architectures 5. Advanced Hybrid Models 6. Graph Neural Networks 7. Music and Text Generation with PyTorch 8. Neural Style Transfer 9. Deep Convolutional GANs 10. Image Generation Using Diffusion 11. Deep Reinforcement Learning 12. Model Training Optimizations 13. Operationalizing PyTorch Models into Production 14. PyTorch on Mobile Devices 15. Rapid Prototyping with PyTorch 16. PyTorch and AutoML 17. PyTorch and Explainable AI 18. Recommendation Systems with PyTorch 19. PyTorch and Hugging Face 20. Index

Running a pre-trained VGG model

We have already discussed LeNet and AlexNet, two of the foundational CNN architectures. As we progress in the chapter, we will explore increasingly complex CNN models. Although, the key principles in building these model architectures will be the same. We will see a modular model-building approach in putting together convolutional layers, pooling layers, and fully connected layers into blocks/modules and then stacking these blocks sequentially or in a branched manner. In this section, we look at the successor to AlexNet – VGGNet.

The name VGG is derived from the Visual Geometry Group of Oxford University, where this model was invented. Compared to the 8 layers and 60 million parameters of AlexNet, VGG consists of 13 layers (10 convolutional layers and 3 fully connected layers) and 138 million parameters. VGG basically stacks more layers onto the AlexNet architecture with smaller size convolution kernels (2x2 or 3x3). Hence, VGG's novelty lies...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image