Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering OpenCV 3

You're reading from   Mastering OpenCV 3 Get hands-on with practical Computer Vision using OpenCV 3

Arrow left icon
Product type Paperback
Published in Apr 2017
Publisher
ISBN-13 9781786467171
Length 250 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (6):
Arrow left icon
Shervin Emami Shervin Emami
Author Profile Icon Shervin Emami
Shervin Emami
David Millán Escrivá David Millán Escrivá
Author Profile Icon David Millán Escrivá
David Millán Escrivá
Eugene Khvedchenia Eugene Khvedchenia
Author Profile Icon Eugene Khvedchenia
Eugene Khvedchenia
Daniel Lelis Baggio Daniel Lelis Baggio
Author Profile Icon Daniel Lelis Baggio
Daniel Lelis Baggio
Roy Shilkrot Roy Shilkrot
Author Profile Icon Roy Shilkrot
Roy Shilkrot
Jason Saragih Jason Saragih
Author Profile Icon Jason Saragih
Jason Saragih
+2 more Show less
Arrow right icon
View More author details
Toc

Reconstruction from many views


Now that we know how to recover the motion and scene geometry from two cameras, it would seem simple to get the parameters of additional cameras and more scene points simply by applying the same process. This matter is in fact not so simple, as we can only get a reconstruction that is upto scale, and each pair of pictures has a different scale.

There are a number of ways to correctly reconstruct the 3D scene data from multiple views. One way to achieve camera pose estimation or camera resectioning, is the Perspective N-Point(PnP) algorithm, where we try to solve for the position of a new camera using N 3D scene points, which we have already found and their respective 2D image points. Another way is to triangulate more points and see how they fit into our existing scene geometry; this will tell us the position of the new camera by means of point cloud registration. In this section, we will discuss using OpenCV's solvePnP functions that implements the first method...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image