Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Computer Vision with TensorFlow 2.x

You're reading from   Mastering Computer Vision with TensorFlow 2.x Build advanced computer vision applications using machine learning and deep learning techniques

Arrow left icon
Product type Paperback
Published in May 2020
Publisher Packt
ISBN-13 9781838827069
Length 430 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Krishnendu Kar Krishnendu Kar
Author Profile Icon Krishnendu Kar
Krishnendu Kar
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Introduction to Computer Vision and Neural Networks
2. Computer Vision and TensorFlow Fundamentals FREE CHAPTER 3. Content Recognition Using Local Binary Patterns 4. Facial Detection Using OpenCV and CNN 5. Deep Learning on Images 6. Section 2: Advanced Concepts of Computer Vision with TensorFlow
7. Neural Network Architecture and Models 8. Visual Search Using Transfer Learning 9. Object Detection Using YOLO 10. Semantic Segmentation and Neural Style Transfer 11. Section 3: Advanced Implementation of Computer Vision with TensorFlow
12. Action Recognition Using Multitask Deep Learning 13. Object Detection Using R-CNN, SSD, and R-FCN 14. Section 4: TensorFlow Implementation at the Edge and on the Cloud
15. Deep Learning on Edge Devices with CPU/GPU Optimization 16. Cloud Computing Platform for Computer Vision 17. Other Books You May Enjoy

An overview of SSD

SSD is a very fast object detector that is well suited to be deployed on mobile and edge devices for real-time prediction. In this chapter, we will learn about how to develop a model using SSD and in the next chapter, we will evaluate its performance when deployed on edge devices. But before getting into the detail of SSD, we will get a quick overview of other object detector models we have learned about in this book so far.

We learned in Chapter 5, Neural Network Architecture and Models, that Faster R-CNN consists of 21,500 region proposals (60 x 40 sliding windows with 9 anchor boxes), which are warped into 2K fixed layers. These 2K layers are fed to a fully connected layer and bounding box regressors to detect the bounding boxes in an image. The 9 anchor boxes result from 3 scales with a box area of 1282, 2562, 5122, and three aspect ratios—1:1, 1...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image