Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning for OpenCV 4

You're reading from   Machine Learning for OpenCV 4 Intelligent algorithms for building image processing apps using OpenCV 4, Python, and scikit-learn

Arrow left icon
Product type Paperback
Published in Sep 2019
Publisher Packt
ISBN-13 9781789536300
Length 420 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Authors (4):
Arrow left icon
Aditya Sharma Aditya Sharma
Author Profile Icon Aditya Sharma
Aditya Sharma
Michael Beyeler (USD) Michael Beyeler (USD)
Author Profile Icon Michael Beyeler (USD)
Michael Beyeler (USD)
Vishwesh Ravi Shrimali Vishwesh Ravi Shrimali
Author Profile Icon Vishwesh Ravi Shrimali
Vishwesh Ravi Shrimali
Michael Beyeler Michael Beyeler
Author Profile Icon Michael Beyeler
Michael Beyeler
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Fundamentals of Machine Learning and OpenCV FREE CHAPTER
2. A Taste of Machine Learning 3. Working with Data in OpenCV 4. First Steps in Supervised Learning 5. Representing Data and Engineering Features 6. Section 2: Operations with OpenCV
7. Using Decision Trees to Make a Medical Diagnosis 8. Detecting Pedestrians with Support Vector Machines 9. Implementing a Spam Filter with Bayesian Learning 10. Discovering Hidden Structures with Unsupervised Learning 11. Section 3: Advanced Machine Learning with OpenCV
12. Using Deep Learning to Classify Handwritten Digits 13. Ensemble Methods for Classification 14. Selecting the Right Model with Hyperparameter Tuning 15. Using OpenVINO with OpenCV 16. Conclusion 17. Other Books You May Enjoy

To get the most out of this book

We recommend that you go through any good Python programming book or online tutorials or videos, if you are a beginner in Python. You can also have a look at DataCamp (http://www.datacamp.com) to learn Python using interactive lessons.

We also recommend that you learn some basic concepts about the Matplotlib library in Python. You can try out this tutorial for that: https://www.datacamp.com/community/tutorials/matplotlib-tutorial-python.

You don't need to have anything installed on your system for this book before starting it. We will cover all the installation steps in the first chapter.

Download the example code files

You can download the example code files for this book from your account at www.packt.com. If you purchased this book elsewhere, you can visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

  1. Log in or register at www.packt.com.
  2. Select the Support tab.
  3. Click on Code Downloads.
  4. Enter the name of the book in the Search box and follow the onscreen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

  • WinRAR/7-Zip for Windows
  • Zipeg/iZip/UnRarX for Mac
  • 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Machine-Learning-for-OpenCV-Second-Edition. In case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "We can set both max_samples<1.0 and max_features<1.0 to implement the random patches method."

A block of code is set as follows:

In [1]: from sklearn.ensemble import BaggingClassifier
... from sklearn.neighbors import KNeighborsClassifier
... bag_knn = BaggingClassifier(KNeighborsClassifier(),
... n_estimators=10)

Any command-line input or output is written as follows:

$ conda install package_name

Bold: Indicates a new term, an important word, or words that you see onscreen.

Warnings or important notes appear like this.
Tips and tricks appear like this.
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image