Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Algorithms

You're reading from   Machine Learning Algorithms A reference guide to popular algorithms for data science and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785889622
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. A Gentle Introduction to Machine Learning FREE CHAPTER 2. Important Elements in Machine Learning 3. Feature Selection and Feature Engineering 4. Linear Regression 5. Logistic Regression 6. Naive Bayes 7. Support Vector Machines 8. Decision Trees and Ensemble Learning 9. Clustering Fundamentals 10. Hierarchical Clustering 11. Introduction to Recommendation Systems 12. Introduction to Natural Language Processing 13. Topic Modeling and Sentiment Analysis in NLP 14. A Brief Introduction to Deep Learning and TensorFlow 15. Creating a Machine Learning Architecture

Machine learning and big data

Another area that can be exploited using machine learning is big data. After the first release of Apache Hadoop, which implemented an efficient MapReduce algorithm, the amount of information managed in different business contexts grew exponentially. At the same time, the opportunity to use it for machine learning purposes arose and several applications such as mass collaborative filtering became reality.

Imagine an online store with a million users and only one thousand products. Consider a matrix where each user is associated with every product by an implicit or explicit ranking. This matrix will contain 1,000,000 x 1,000 cells, and even if the number of products is very limited, any operation performed on it will be slow and memory-consuming. Instead, using a cluster, together with parallel algorithms, such a problem disappears and operations with higher dimensionality can be carried out in a very short time.

Think about training an image classifier with a million samples. A single instance needs to iterate several times, processing small batches of pictures. Even if this problem can be performed using a streaming approach (with a limited amount of memory), it's not surprising to wait even for a few days before the model begins to perform well. Adopting a big data approach instead, it's possible to asynchronously train several local models, periodically share the updates, and re-synchronize them all with a master model. This technique has also been exploited to solve some reinforcement learning problems, where many agents (often managed by different threads) played the same game, providing their periodical contribute to a global intelligence.

Not every machine learning problem is suitable for big data, and not all big datasets are really useful when training models. However, their conjunction in particular situations can drive to extraordinary results by removing many limitations that often affect smaller scenarios.

In the chapter dedicated to recommendation systems, we're going to discuss how to implement collaborative filtering using Apache Spark. The same framework will be also adopted for an example of Naive Bayes classification.

If you want to know more about the whole Hadoop ecosystem, visit http://hadoop.apache.org. Apache Mahout (http://mahout.apache.org) is a dedicated machine learning framework and Spark (http://spark.apache.org), one the fastest computational engines, has a module called MLib that implements many common algorithms that benefit from parallel processing.
You have been reading a chapter from
Machine Learning Algorithms
Published in: Jul 2017
Publisher: Packt
ISBN-13: 9781785889622
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image