Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning PySpark

You're reading from   Learning PySpark Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0

Arrow left icon
Product type Paperback
Published in Feb 2017
Publisher Packt
ISBN-13 9781786463708
Length 274 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Denny Lee Denny Lee
Author Profile Icon Denny Lee
Denny Lee
Tomasz Drabas Tomasz Drabas
Author Profile Icon Tomasz Drabas
Tomasz Drabas
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Understanding Spark FREE CHAPTER 2. Resilient Distributed Datasets 3. DataFrames 4. Prepare Data for Modeling 5. Introducing MLlib 6. Introducing the ML Package 7. GraphFrames 8. TensorFrames 9. Polyglot Persistence with Blaze 10. Structured Streaming 11. Packaging Spark Applications Index

Catalyst Optimizer refresh

As noted in Chapter 1, Understanding Spark, one of the primary reasons the Spark SQL engine is so fast is because of the Catalyst Optimizer. For readers with a database background, this diagram looks similar to the logical/physical planner and cost model/cost-based optimization of a relational database management system (RDBMS):

Catalyst Optimizer refresh

The significance of this is that, as opposed to immediately processing the query, the Spark engine's Catalyst Optimizer compiles and optimizes a logical plan and has a cost optimizer that determines the most efficient physical plan generated.

Note

As noted in earlier chapters, while the Spark SQL Engine has both rules-based and cost-based optimizations that include (but are not limited to) predicate push down and column pruning. Targeted for the Apache Spark 2.2 release, the jira item [SPARK-16026] Cost-based Optimizer Framework at https://issues.apache.org/jira/browse/SPARK-16026 is an umbrella ticket to implement a cost-based optimizer...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image