Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learn Amazon SageMaker

You're reading from   Learn Amazon SageMaker A guide to building, training, and deploying machine learning models for developers and data scientists

Arrow left icon
Product type Paperback
Published in Aug 2020
Publisher Packt
ISBN-13 9781800208919
Length 490 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Julien Simon Julien Simon
Author Profile Icon Julien Simon
Julien Simon
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Introduction to Amazon SageMaker
2. Chapter 1: Introduction to Amazon SageMaker FREE CHAPTER 3. Chapter 2: Handling Data Preparation Techniques 4. Section 2: Building and Training Models
5. Chapter 3: AutoML with Amazon SageMaker Autopilot 6. Chapter 4: Training Machine Learning Models 7. Chapter 5: Training Computer Vision Models 8. Chapter 6: Training Natural Language Processing Models 9. Chapter 7: Extending Machine Learning Services Using Built-In Frameworks 10. Chapter 8: Using Your Algorithms and Code 11. Section 3: Diving Deeper on Training
12. Chapter 9: Scaling Your Training Jobs 13. Chapter 10: Advanced Training Techniques 14. Section 4: Managing Models in Production
15. Chapter 11: Deploying Machine Learning Models 16. Chapter 12: Automating Machine Learning Workflows 17. Chapter 13: Optimizing Prediction Cost and Performance 18. Other Books You May Enjoy

Using the built-in frameworks

We've covered XGBoost and Scikit-Learn already. Now, it's time to see how we can use deep learning frameworks. Let's start with TensorFlow and Keras.

Working with TensorFlow and Keras

In this example, we're going to train a simple convolutional neural network on the Fashion-MNIST dataset (https://github.com/zalandoresearch/fashion-mnist).

Our code is split in two source files: one for the entry point script (fmnist.py, using only TensorFlow 2.x APIs), and one for the model (model.py, based on Keras layers). For the sake of brevity, I will only discuss the SageMaker-related steps. You can find the full code in the GitHub repository for this book:

  1. fmnist.py starts by reading hyperparameters from the command line:
    import tensorflow as tf import numpy as np import argparse, os
    from model import FMNISTModel
    parser = argparse.ArgumentParser()parser.add_argument('--epochs', type=int, default=10)parser.add_argument...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image