Feature standardization of image data
In this recipe, we will look at how Keras can be used for feature standardization of image data.
Getting ready
Make sure the Keras installation and Jupyter Notebook installation have been completed.
How to do it...
We will be using the mnist
dataset. First, let's plot the mnist
images without standardization:
from keras.datasets import mnist from matplotlib import pyplot (X_train, y_train), (X_test, y_test) = mnist.load_data() # create a grid of 3x3 images for i in range(0, 9): ax = pyplot.subplot(330 + 1 + i) pyplot.tight_layout() ax.tick_params(axis='x', colors='white') ax.tick_params(axis='y', colors='white') pyplot.imshow(X_train[i], cmap=pyplot.get_cmap('gray')) # show the plot pyplot.show()
The output plot will be similar to the following screenshot:
For feature standardization, we are planning to use ImageDataGenerator
.
Initializing ImageDataGenerator
Use keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center...