Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Julia for Data Science

You're reading from   Julia for Data Science high-performance computing simplified

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785289699
Length 346 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Anshul Joshi Anshul Joshi
Author Profile Icon Anshul Joshi
Anshul Joshi
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. The Groundwork – Julia's Environment FREE CHAPTER 2. Data Munging 3. Data Exploration 4. Deep Dive into Inferential Statistics 5. Making Sense of Data Using Visualization 6. Supervised Machine Learning 7. Unsupervised Machine Learning 8. Creating Ensemble Models 9. Time Series 10. Collaborative Filtering and Recommendation System 11. Introduction to Deep Learning

Summary

In this chapter, we learned what data munging is and why it is necessary for data science. Julia provides functionalities to facilitate data munging with the DataFrames.jl package, with features such as these:

  • NA: A missing value in Julia is represented by a specific data type, NA.
  • DataArray: DataArray provided in the DataFrames.jl provides features such as allowing us to store some missing values in an array.
  • DataFrame: DataFrame is 2-D data structure like spreadsheets. It is very similar to R or pandas's dataframes, and provides many functionalities to represent and analyze data. DataFrames has many features well suited for data analysis and statistical modeling.
  • A dataset can have different types of data in different columns.
  • Records have a relation with other records in the same row of different columns of the same length.
  • Columns can be labeled. Labeling helps us to easily become familiar with the data and access it without the need to remember their numerical indices.

We learned...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image