Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java Deep Learning Projects

You're reading from   Java Deep Learning Projects Implement 10 real-world deep learning applications using Deeplearning4j and open source APIs

Arrow left icon
Product type Paperback
Published in Jun 2018
Publisher Packt
ISBN-13 9781788997454
Length 436 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Md. Rezaul Karim Md. Rezaul Karim
Author Profile Icon Md. Rezaul Karim
Md. Rezaul Karim
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Deep Learning FREE CHAPTER 2. Cancer Types Prediction Using Recurrent Type Networks 3. Multi-Label Image Classification Using Convolutional Neural Networks 4. Sentiment Analysis Using Word2Vec and LSTM Network 5. Transfer Learning for Image Classification 6. Real-Time Object Detection using YOLO, JavaCV, and DL4J 7. Stock Price Prediction Using LSTM Network 8. Distributed Deep Learning – Video Classification Using Convolutional LSTM Networks 9. Playing GridWorld Game Using Deep Reinforcement Learning 10. Developing Movie Recommendation Systems Using Factorization Machines 11. Discussion, Current Trends, and Outlook 12. Other Books You May Enjoy

Frequently asked questions (FAQs)

Now that we have solved the GridWorld problem, there are other practical aspects in reinforcement learning and overall deep learning phenomena that need to be considered too. In this section, we will see some frequently asked questions that may be already on your mind. Answers to these questions can be found in Appendix.

  1. What is Q in Q-learning?
  2. I understand that we performed the training on GPU and cuDNN for faster convergence. However, there is no GPU on my machine. What can I do?
  3. There is no visualization, so it is difficult to follow the moves made by the agent toward the target.
  4. Give a few more examples of reinforcement learning.
  5. How do I reconcile the results obtained for our mini-batch processing?
  6. How would I reconcile the DQN?
  7. I would like to save the trained network. Can I do that?
  8. I would like to restore the saved (that is, trained...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image