Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Introduction to DevOps with Kubernetes

You're reading from   Introduction to DevOps with Kubernetes Build scalable cloud-native applications using DevOps patterns created with Kubernetes

Arrow left icon
Product type Paperback
Published in May 2019
Publisher
ISBN-13 9781789808285
Length 374 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Süleyman Akbaş Süleyman Akbaş
Author Profile Icon Süleyman Akbaş
Süleyman Akbaş
Onur Yılmaz Onur Yılmaz
Author Profile Icon Onur Yılmaz
Onur Yılmaz
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Chapter 1: Introduction to DevOps FREE CHAPTER 2. Chapter 2: Introduction to Microservices and Containers 3. Chapter 3: Introduction to Kubernetes 4. Chapter 4: Creating a Kubernetes Cluster 5. Chapter 5: Deploy an Application to Kubernetes 6. Chapter 6: Configuration and Storage Management in Kubernetes 7. Chapter 7: Updating and Scaling an Application in Kubernetes 8. Chapter 8: Troubleshooting Applications in Kubernetes 9. Chapter 9: Monitoring Applications in Kubernetes Appendix

Fundamental Kubernetes Resources


Kubernetes creates a powerful abstraction to provide life cycle management of scalable and robust cloud-native applications. Master and node components, as discussed in the previous chapters, work continuously to fulfill the desired state of workloads defined by the users using the Kubernetes API and client tools. In this section, different Kubernetes concepts and resources are explained with their essentials and real-life practices.

The Pod

The pod is the building block of Kubernetes computation objects. A pod consists of containers that are tightly coupled and should be treated as a single application. These containers in the same pod are always scheduled on the same node since they share volume and networking interfaces. Therefore, the pod can be imagined as an encapsulated set of containers that should work together and share the same life cycle, such as scaling up or down together.

Pods can be defined with just one container and its associated metadata...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image