Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Haskell High Performance Programming

You're reading from   Haskell High Performance Programming Write Haskell programs that are robust and fast enough to stand up to the needs of today

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781786464217
Length 408 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Samuli Thomasson Samuli Thomasson
Author Profile Icon Samuli Thomasson
Samuli Thomasson
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Identifying Bottlenecks FREE CHAPTER 2. Choosing the Correct Data Structures 3. Profile and Benchmark to Your Heart's Content 4. The Devil's in the Detail 5. Parallelize for Performance 6. I/O and Streaming 7. Concurrency and Performance 8. Tweaking the Compiler and Runtime System (GHC) 9. GHC Internals and Code Generation 10. Foreign Function Interface 11. Programming for the GPU with Accelerate 12. Scaling to the Cloud with Cloud Haskell 13. Functional Reactive Programming 14. Library Recommendations Index

Handling sequential data

The standard list,[], is the most used data structure for sequential data. It has reasonable performance, but when processing multiple small values, say Chars, the overhead of a linked list might be too much. Often, the convenient nature of [] is convincing enough.

The wide range of list functions in Data.List are hand-optimized and many are subject to fusion. List fusion, as it is currently implemented using the foldr/build fusion transformation, is subtly different from stream fusion employed in ByteString and Text (concatMap is a bit problematic with traditional stream fusion). Still, the end result is pretty much the same; in a long pipeline of list functions, intermediate lists will usually not be constructed.

Say we want a pipeline that first increases every element by one, calculates intermediate sums of all elements up to current element, and finally sums all elements. From the previous chapter, we have learned to write optimally strict recursive functions...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image