Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Hands-On Q-Learning with Python
Hands-On Q-Learning with Python

Hands-On Q-Learning with Python: Practical Q-learning with OpenAI Gym, Keras, and TensorFlow

eBook
€8.99 €23.99
Paperback
€29.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Table of content icon View table of contents Preview book icon Preview Book

Hands-On Q-Learning with Python

Brushing Up on Reinforcement Learning Concepts

In this book, you will learn the fundamentals of Q-learning, a branch of reinforcement learning (RL), and how to apply them to challenging real-world optimization problems. You'll design software that dynamically writes itself, modifies itself, and improves its own performance in real time.

In doing so, you will build self-learning intelligent agents that start with no knowledge of how to solve a problem and independently find optimal solutions to that problem through observation, trial and error, and memory.

RL is one of the most exciting branches of artificial intelligence (AI) and powers some of its most visible successes, from recommendation systems that learn from user behavior to game-playing machines that can beat any human being at chess or Go.

Q-learning is one of the easiest versions of RL to get started with, and...

What is RL?

An RL agent is an optimization process that learns from experience, using data from its environment that it has collected through its own observations. It starts out knowing nothing about a task explicitly, learns by trial and error about what happens when it makes decisions, keeps track of successful decisions, and makes those same decisions under the same circumstances in the future.

In fields other than AI, RL is also referred to as dynamic programming. It takes much of its basic operating structure from behavioral psychology, and many of its mathematical constructs such as utility functions are taken from fields such as economics and game theory.

Let's get familiar with some key concepts in RL:

  • Agent: This is the decision-making entity.
  • Environment: This is the world in which the agent operates, such as a game to win or task to accomplish.
  • State: This...

States, actions, and rewards

What does it mean to be in a state, to take an action, or to receive a reward? These are the most important concepts for us to understand intuitively, so let's dig deeper into them. The following diagram depicts the agent-environment interaction in an MDP:

The agent interacts with the environment through actions, and it receives rewards and state information from the environment. In other words, the states and rewards are feedback from the environment, and the actions are inputs to the environment from the agent.

Going back to our simple driving simulator example, our agent might be moving or stopped at a red light, turning left or right, or heading straight. There might be other cars in the intersection, or there might not be. Our distance from the destination will be X units.

...

Key concepts in RL

Here, we'll go over some of the most important concepts that we'll need to bear in mind throughout our study of RL. We'll focus heavily on topics that are specific to Q-learning, but we'll also explore topics relating to other branches of RL, such as the related algorithm SARSA and policy-based RL algorithms.

Value-based versus policy-based iteration

We'll be using value-based iteration for the projects in this book. The description of the Bellman equation given previously offers a very high-level understanding of how value-based iteration works. The main difference is that in value-based iteration, the agent learns the expected reward value of each state-action pair, and in policy...

SARSA versus Q-learning – on-policy or off?

Similar to Q-learning, SARSA is a model-free RL method that does not explicitly learn the agent's policy function.

The primary difference between SARSA and Q-learning is that SARSA is an on-policy method while Q-learning is an off-policy method. The effective difference between the two algorithms happens in the step where the Q-table is updated. Let's discuss what that means with some examples:

Monte Carlo tree search (MCTS) is a type of model-based RL. We won't be discussing it in detail here, but it's useful to explore further as a contrast to model-free RL algorithms. Briefly, in model-based RL, we attempt to explicitly model a value function instead of relying on sampling and observation, so that we don't have to rely as much on trial and error in the learning process.

...

Summary

RL is one of the most exciting and fastest-growing branches of machine learning, with the greatest potential to create powerful optimization solutions to wide-ranging computing problems. As we have seen, Q-learning is one of the most accessible branches of RL and will provide a beginning RL practitioner and experienced programmer a strong foundation for developing solutions to both straightforward and complex optimization problems.

In the next chapter, we'll learn about Q-learning in detail, as well as about the learning agent that we'll be training to solve our Q-learning task. We'll discuss how Q-learning solves MDPs using a state-action model and how to apply that to our programming task.

Questions

  1. What is the difference between a reward and a value?
  2. What is a hyperparameter? Give an example of a hyperparameter other than the ones discussed in this chapter.
  3. Why will a Q-learning agent not choose the highest Q-valued action for its current state?
  4. Explain one benefit of a decaying gamma.
  5. Describe in one or two sentences the difference between the decision-making strategies of SARSA and Q-learning.
  6. What kind of policy does Q-learning implicitly assume the agent is following?
  7. Under what circumstances will SARSA and Q-learning produce the same results?
Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Understand Q-learning algorithms to train neural networks using Markov Decision Process (MDP)
  • Study practical deep reinforcement learning using Q-Networks
  • Explore state-based unsupervised learning for machine learning models

Description

Q-learning is a machine learning algorithm used to solve optimization problems in artificial intelligence (AI). It is one of the most popular fields of study among AI researchers. This book starts off by introducing you to reinforcement learning and Q-learning, in addition to helping you become familiar with OpenAI Gym as well as libraries such as Keras and TensorFlow. A few chapters into the book, you will gain insights into model-free Q-learning and use deep Q-networks and double deep Q-networks to solve complex problems. This book will guide you in exploring use cases such as self-driving vehicles and OpenAI Gym’s CartPole problem. You will also learn how to tune and optimize Q-networks and their hyperparameters. As you progress, you will understand the reinforcement learning approach to solving real-world problems. You will also explore how to use Q-learning and related algorithms in scientific research. Toward the end, you’ll gain insight into what’s in store for reinforcement learning. By the end of this book, you will be equipped with the skills you need to solve reinforcement learning problems using Q-learning algorithms with OpenAI Gym, Keras, and TensorFlow.

Who is this book for?

If you are a machine learning developer, engineer, or professional who wants to explore the deep learning approach for a complex environment, then this is the book for you. Proficiency in Python programming and basic understanding of decision-making in reinforcement learning is assumed.

What you will learn

  • Explore the fundamentals of reinforcement learning and the state-action-reward process
  • Understand Markov Decision Processes
  • Get well-versed with libraries such as Keras, and TensorFlow
  • Create and deploy model-free learning and deep Q-learning agents with TensorFlow, Keras, and OpenAI Gym
  • Choose and optimize a Q-network's learning parameters and fine-tune its performance
  • Discover real-world applications and use cases of Q-learning
Estimated delivery fee Deliver to Malta

Premium delivery 7 - 10 business days

€32.95
(Includes tracking information)

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Apr 19, 2019
Length: 212 pages
Edition : 1st
Language : English
ISBN-13 : 9781789345803
Category :
Languages :
Tools :

What do you get with Print?

Product feature icon Instant access to your digital eBook copy whilst your Print order is Shipped
Product feature icon Paperback book shipped to your preferred address
Product feature icon Download this book in EPUB and PDF formats
Product feature icon Access this title in our online reader with advanced features
Product feature icon DRM FREE - Read whenever, wherever and however you want
Product feature icon AI Assistant (beta) to help accelerate your learning
OR
Modal Close icon
Payment Processing...
tick Completed

Shipping Address

Billing Address

Shipping Methods
Estimated delivery fee Deliver to Malta

Premium delivery 7 - 10 business days

€32.95
(Includes tracking information)

Product Details

Publication date : Apr 19, 2019
Length: 212 pages
Edition : 1st
Language : English
ISBN-13 : 9781789345803
Category :
Languages :
Tools :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 92.97
Python Reinforcement Learning
€37.99
Hands-On Deep Learning Architectures with Python
€24.99
Hands-On Q-Learning with Python
€29.99
Total 92.97 Stars icon
Banner background image

Table of Contents

13 Chapters
Section 1: Q-Learning: A Roadmap Chevron down icon Chevron up icon
Brushing Up on Reinforcement Learning Concepts Chevron down icon Chevron up icon
Getting Started with the Q-Learning Algorithm Chevron down icon Chevron up icon
Setting Up Your First Environment with OpenAI Gym Chevron down icon Chevron up icon
Teaching a Smartcab to Drive Using Q-Learning Chevron down icon Chevron up icon
Section 2: Building and Optimizing Q-Learning Agents Chevron down icon Chevron up icon
Building Q-Networks with TensorFlow Chevron down icon Chevron up icon
Digging Deeper into Deep Q-Networks with Keras and TensorFlow Chevron down icon Chevron up icon
Section 3: Advanced Q-Learning Challenges with Keras, TensorFlow, and OpenAI Gym Chevron down icon Chevron up icon
Decoupling Exploration and Exploitation in Multi-Armed Bandits Chevron down icon Chevron up icon
Further Q-Learning Research and Future Projects Chevron down icon Chevron up icon
Assessments Chevron down icon Chevron up icon
Other Books You May Enjoy Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Half star icon Empty star icon Empty star icon 2.3
(3 Ratings)
5 star 33.3%
4 star 0%
3 star 0%
2 star 0%
1 star 66.7%
SSV Jul 18, 2019
Full star icon Full star icon Full star icon Full star icon Full star icon 5
I was sent a copy of this book by the publisher to read and review.If you are an intermediate level python user and if you are passionate about artificial intelligence and neural networks and are looking to improve your programming skills with Python, then this book is a must purchase!Author Ms. Nazia Habib has created an outstanding textbook that is perfect for self-directed learning. It first begins with an extremely thorough and easy to understand explanation of theoretical concepts surrounding reinforcement learning, and provides extensive information on the coding process with Q learning, using easy to follow examples as well as companion coding exercises to help you integrate your newfound knowledge as you progress through the book.As your skills progress throughout the book, more complex examples including neural networks are introduced, with applications being endless!So if you want to start building your expertise in programming for artificial intelligence, then this book is a must-read!
Amazon Verified review Amazon
Dr. Mark Potter May 15, 2020
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Limited in scope, not a great read.
Amazon Verified review Amazon
roman575 Jun 30, 2020
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
Introduction, repetitions, conclusions, summaries, installation instructions comprise 90% of the book. Essential material is very basic and could be find in any 20 pages blog
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is the delivery time and cost of print book? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela
What is custom duty/charge? Chevron down icon Chevron up icon

Customs duty are charges levied on goods when they cross international borders. It is a tax that is imposed on imported goods. These duties are charged by special authorities and bodies created by local governments and are meant to protect local industries, economies, and businesses.

Do I have to pay customs charges for the print book order? Chevron down icon Chevron up icon

The orders shipped to the countries that are listed under EU27 will not bear custom charges. They are paid by Packt as part of the order.

List of EU27 countries: www.gov.uk/eu-eea:

A custom duty or localized taxes may be applicable on the shipment and would be charged by the recipient country outside of the EU27 which should be paid by the customer and these duties are not included in the shipping charges been charged on the order.

How do I know my custom duty charges? Chevron down icon Chevron up icon

The amount of duty payable varies greatly depending on the imported goods, the country of origin and several other factors like the total invoice amount or dimensions like weight, and other such criteria applicable in your country.

For example:

  • If you live in Mexico, and the declared value of your ordered items is over $ 50, for you to receive a package, you will have to pay additional import tax of 19% which will be $ 9.50 to the courier service.
  • Whereas if you live in Turkey, and the declared value of your ordered items is over € 22, for you to receive a package, you will have to pay additional import tax of 18% which will be € 3.96 to the courier service.
How can I cancel my order? Chevron down icon Chevron up icon

Cancellation Policy for Published Printed Books:

You can cancel any order within 1 hour of placing the order. Simply contact customercare@packt.com with your order details or payment transaction id. If your order has already started the shipment process, we will do our best to stop it. However, if it is already on the way to you then when you receive it, you can contact us at customercare@packt.com using the returns and refund process.

Please understand that Packt Publishing cannot provide refunds or cancel any order except for the cases described in our Return Policy (i.e. Packt Publishing agrees to replace your printed book because it arrives damaged or material defect in book), Packt Publishing will not accept returns.

What is your returns and refunds policy? Chevron down icon Chevron up icon

Return Policy:

We want you to be happy with your purchase from Packtpub.com. We will not hassle you with returning print books to us. If the print book you receive from us is incorrect, damaged, doesn't work or is unacceptably late, please contact Customer Relations Team on customercare@packt.com with the order number and issue details as explained below:

  1. If you ordered (eBook, Video or Print Book) incorrectly or accidentally, please contact Customer Relations Team on customercare@packt.com within one hour of placing the order and we will replace/refund you the item cost.
  2. Sadly, if your eBook or Video file is faulty or a fault occurs during the eBook or Video being made available to you, i.e. during download then you should contact Customer Relations Team within 14 days of purchase on customercare@packt.com who will be able to resolve this issue for you.
  3. You will have a choice of replacement or refund of the problem items.(damaged, defective or incorrect)
  4. Once Customer Care Team confirms that you will be refunded, you should receive the refund within 10 to 12 working days.
  5. If you are only requesting a refund of one book from a multiple order, then we will refund you the appropriate single item.
  6. Where the items were shipped under a free shipping offer, there will be no shipping costs to refund.

On the off chance your printed book arrives damaged, with book material defect, contact our Customer Relation Team on customercare@packt.com within 14 days of receipt of the book with appropriate evidence of damage and we will work with you to secure a replacement copy, if necessary. Please note that each printed book you order from us is individually made by Packt's professional book-printing partner which is on a print-on-demand basis.

What tax is charged? Chevron down icon Chevron up icon

Currently, no tax is charged on the purchase of any print book (subject to change based on the laws and regulations). A localized VAT fee is charged only to our European and UK customers on eBooks, Video and subscriptions that they buy. GST is charged to Indian customers for eBooks and video purchases.

What payment methods can I use? Chevron down icon Chevron up icon

You can pay with the following card types:

  1. Visa Debit
  2. Visa Credit
  3. MasterCard
  4. PayPal
What is the delivery time and cost of print books? Chevron down icon Chevron up icon

Shipping Details

USA:

'

Economy: Delivery to most addresses in the US within 10-15 business days

Premium: Trackable Delivery to most addresses in the US within 3-8 business days

UK:

Economy: Delivery to most addresses in the U.K. within 7-9 business days.
Shipments are not trackable

Premium: Trackable delivery to most addresses in the U.K. within 3-4 business days!
Add one extra business day for deliveries to Northern Ireland and Scottish Highlands and islands

EU:

Premium: Trackable delivery to most EU destinations within 4-9 business days.

Australia:

Economy: Can deliver to P. O. Boxes and private residences.
Trackable service with delivery to addresses in Australia only.
Delivery time ranges from 7-9 business days for VIC and 8-10 business days for Interstate metro
Delivery time is up to 15 business days for remote areas of WA, NT & QLD.

Premium: Delivery to addresses in Australia only
Trackable delivery to most P. O. Boxes and private residences in Australia within 4-5 days based on the distance to a destination following dispatch.

India:

Premium: Delivery to most Indian addresses within 5-6 business days

Rest of the World:

Premium: Countries in the American continent: Trackable delivery to most countries within 4-7 business days

Asia:

Premium: Delivery to most Asian addresses within 5-9 business days

Disclaimer:
All orders received before 5 PM U.K time would start printing from the next business day. So the estimated delivery times start from the next day as well. Orders received after 5 PM U.K time (in our internal systems) on a business day or anytime on the weekend will begin printing the second to next business day. For example, an order placed at 11 AM today will begin printing tomorrow, whereas an order placed at 9 PM tonight will begin printing the day after tomorrow.


Unfortunately, due to several restrictions, we are unable to ship to the following countries:

  1. Afghanistan
  2. American Samoa
  3. Belarus
  4. Brunei Darussalam
  5. Central African Republic
  6. The Democratic Republic of Congo
  7. Eritrea
  8. Guinea-bissau
  9. Iran
  10. Lebanon
  11. Libiya Arab Jamahriya
  12. Somalia
  13. Sudan
  14. Russian Federation
  15. Syrian Arab Republic
  16. Ukraine
  17. Venezuela