Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On One-shot Learning with Python

You're reading from   Hands-On One-shot Learning with Python Learn to implement fast and accurate deep learning models with fewer training samples using PyTorch

Arrow left icon
Product type Paperback
Published in Apr 2020
Publisher Packt
ISBN-13 9781838825461
Length 156 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Ankush Garg Ankush Garg
Author Profile Icon Ankush Garg
Ankush Garg
Shruti Jadon Shruti Jadon
Author Profile Icon Shruti Jadon
Shruti Jadon
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Summary

In this chapter, we learned about metrics-based, one-shot learning methods. We explored two neural network architectures that have been used for one-shot learning in both the research community and software industry as well. We also learned how to evaluate trained models. Then, we executed an exercise in Siamese networks using the MNIST dataset. In conclusion, we can say that both the matching networks and Siamese network architectures have successfully proven that by changing the loss function or feature representation, we can achieve our objective with a limited amount of data.

In the next chapter, we will be exploring different optimization-based methods and learn how they differ from metrics-based methods.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image