Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Neuroevolution with Python

You're reading from   Hands-On Neuroevolution with Python Build high-performing artificial neural network architectures using neuroevolution-based algorithms

Arrow left icon
Product type Paperback
Published in Dec 2019
Publisher Packt
ISBN-13 9781838824914
Length 368 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Iaroslav Omelianenko Iaroslav Omelianenko
Author Profile Icon Iaroslav Omelianenko
Iaroslav Omelianenko
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Fundamentals of Evolutionary Computation Algorithms and Neuroevolution Methods FREE CHAPTER
2. Overview of Neuroevolution Methods 3. Python Libraries and Environment Setup 4. Section 2: Applying Neuroevolution Methods to Solve Classic Computer Science Problems
5. Using NEAT for XOR Solver Optimization 6. Pole-Balancing Experiments 7. Autonomous Maze Navigation 8. Novelty Search Optimization Method 9. Section 3: Advanced Neuroevolution Methods
10. Hypercube-Based NEAT for Visual Discrimination 11. ES-HyperNEAT and the Retina Problem 12. Co-Evolution and the SAFE Method 13. Deep Neuroevolution 14. Section 4: Discussion and Concluding Remarks
15. Best Practices, Tips, and Tricks 16. Concluding Remarks 17. Other Books You May Enjoy

Quadtree information extraction and ES-HyperNEAT basics

For the effective calculation of the information density within the connectivity patterns of the substrate, we need to use an appropriate data structure. We need to employ a data structure that allows an effective search through the two-dimensional substrate space at different levels of granularity. In computer science, there is a data structure that perfectly fits these requirements. This structure is the quadtree.

The quadtree is a data structure that allows us to organize an effective search through two-dimensional space by splitting any area of interest into four subareas. Each of these subareas consequently becomes a leaf of a tree, with the root node representing the initial region.

ES-HyperNEAT employs the quadtree data structure to iteratively look for the new connections and nodes in the substrate, starting from...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image