In the previous diagram, we can see four types of basic autoencoding architectures. Shallow autoencoders (an extension of shallow neural networks) are defined by having just one hidden layer of neurons, whereas deep autoencoders can have many layers that perform the encoding and decoding operations. Recall from the previous chapters that deeper neural networks may benefit from additional representational power compared to their shallow counterparts. Since autoencoders qualify as a specific breed of feed-forward networks, this also holds true for them. Additionally, it has been noted that deeper autoencoders may exponentially reduce the computational resources that are required for the network to learn to represent its inputs. It may also greatly reduce the number of training samples that are required for the network to learn a rich compressed...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Japan
Slovakia