Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Mathematics for Deep Learning

You're reading from   Hands-On Mathematics for Deep Learning Build a solid mathematical foundation for training efficient deep neural networks

Arrow left icon
Product type Paperback
Published in Jun 2020
Publisher Packt
ISBN-13 9781838647292
Length 364 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Jay Dawani Jay Dawani
Author Profile Icon Jay Dawani
Jay Dawani
Arrow right icon
View More author details
Toc

Table of Contents (19) Chapters Close

Preface 1. Section 1: Essential Mathematics for Deep Learning
2. Linear Algebra FREE CHAPTER 3. Vector Calculus 4. Probability and Statistics 5. Optimization 6. Graph Theory 7. Section 2: Essential Neural Networks
8. Linear Neural Networks 9. Feedforward Neural Networks 10. Regularization 11. Convolutional Neural Networks 12. Recurrent Neural Networks 13. Section 3: Advanced Deep Learning Concepts Simplified
14. Attention Mechanisms 15. Generative Models 16. Transfer and Meta Learning 17. Geometric Deep Learning 18. Other Books You May Enjoy

Vector spaces and subspaces

In this section, we will explore the concepts of vector spaces and subspaces. These are very important to our understanding of linear algebra. In fact, if we do not have an understanding of vector spaces and subspaces, we do not truly have an understanding of how to solve linear algebra problems.

Spaces

Vector spaces are one of the fundamental settings for linear algebra, and, as the name suggests, they are spaces where all vectors reside. We will denote the vector space with V.

The easiest way to think of dimensions is to count the number of elements in the column vector. Suppose we have , then . is a straight line, is all the possible points in the xy-plane, and is all the possible points in the xyz-plane—that is, 3-dimensional space, and so on.

The following are some of the rules for vector spaces:

  • There exists in V an additive identity element such that for all .
  • For all , there exists an additive inverse such that .
  • For all , there exists a multiplicative identity such that .
  • Vectors are commutative, such that for all , .
  • Vectors are associative, such that .
  • Vectors have distributivity, such that and for all and for all .

A set of vectors is said to be linearly independent if , which implies that .

Another important concept for us to know is called span. The span of is the set of all linear combinations that can be made using the n vectors. Therefore, if the vectors are linearly independent and span V completely; then, the vectors are the basis of V.

Therefore, the dimension of V is the number of basis vectors we have, and we denote it dimV.

Subspaces

Subspaces are another very important concept that state that we can have one or many vector spaces inside another vector space. Let's suppose V is a vector space, and we have a subspace . Then, S can only be a subspace if it follows the three rules, stated as follows:

  • and , which implies that S is closed under addition
  • and so that , which implies that S is closed under scalar multiplication

If , then their sum is , where the result is also a subspace of V.

The dimension of the sum is as follows:

You have been reading a chapter from
Hands-On Mathematics for Deep Learning
Published in: Jun 2020
Publisher: Packt
ISBN-13: 9781838647292
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image