So far in this chapter, we have studied two kinds of generative models—GANs and VAEs—but there is also another kind, known as flow-based generative models, which directly learn the probability density function of the data distribution, which is something that the previous models do not do. Flow-based models make use of normalizing flows, which overcomes the difficulty that GANs and VAEs face in trying to learn the distribution. This approach can transform a simple distribution into a more complex one through a series of invertible mappings. We repeatedly apply the change of variables rule, which allows the initial probability density to flow through the series of invertible mappings, and at the end, we get the target probability distribution.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Japan
Slovakia