Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On GPU Programming with Python and CUDA

You're reading from   Hands-On GPU Programming with Python and CUDA Explore high-performance parallel computing with CUDA

Arrow left icon
Product type Paperback
Published in Nov 2018
Publisher Packt
ISBN-13 9781788993913
Length 310 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Dr. Brian Tuomanen Dr. Brian Tuomanen
Author Profile Icon Dr. Brian Tuomanen
Dr. Brian Tuomanen
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Why GPU Programming? FREE CHAPTER 2. Setting Up Your GPU Programming Environment 3. Getting Started with PyCUDA 4. Kernels, Threads, Blocks, and Grids 5. Streams, Events, Contexts, and Concurrency 6. Debugging and Profiling Your CUDA Code 7. Using the CUDA Libraries with Scikit-CUDA 8. The CUDA Device Function Libraries and Thrust 9. Implementation of a Deep Neural Network 10. Working with Compiled GPU Code 11. Performance Optimization in CUDA 12. Where to Go from Here 13. Assessment 14. Other Books You May Enjoy

Profiling your code

We saw in the previous example that we can individually time different functions and components with the standard time function in Python. While this approach works fine for our small example program, this won't always be feasible for larger programs that call on many different functions, some of which may or may not be worth our effort to parallelize, or even optimize on the CPU. Our goal here is to find the bottlenecks and hotspots of a programeven if we were feeling energetic and used time around every function call we make, we might miss something, or there might be some system or library calls that we don't even consider that happen to be slowing things down. We should find candidate portions of the code to offload onto the GPU before we even think about rewriting the code to run on the GPU; we must always follow the wise words of the famous American computer scientist Donald Knuth: Premature optimization is the root of all evil.

We use what is known as a profiler to find these hot spots and bottlenecks in our code. A profiler will conveniently allow us to see where our program is taking the most time, and allow us to optimize accordingly.

Using the cProfile module

We will primarily be using the cProfile module to check our code. This module is a standard library function that is contained in every modern Python installation. We can run the profiler from the command line with -m cProfile, and specify that we want to organize the results by the cumulative time spent on each function with -s cumtime, and then redirect the output into a text file with the > operator.

This will work on both the Linux Bash or Windows PowerShell command line.

Let's try this now:

We can now look at the contents of the text file with our favorite text editor. Let's keep in mind that the output of the program will be included at the beginning of the file:

Now, since we didn't remove the references to time in the original example, we see their output in the first two lines at the beginning. We can then see the total number of function calls made in this program, and the cumulative amount of time to run it.

Subsequently, we have a list of functions that are called in the program, ordered from the cumulatively most time-consuming functions to the least; the first line is the program itself, while the second line is, as expected, the simple_mandelbrot function from our program. (Notice that the time here aligns with what we measured with the time command). After this, we can see many libraries and system calls that relate to dumping the Mandelbrot graph to a file, all of which take comparatively less time. We use such output from cProfile to infer where our bottlenecks are within a given program.

You have been reading a chapter from
Hands-On GPU Programming with Python and CUDA
Published in: Nov 2018
Publisher: Packt
ISBN-13: 9781788993913
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image