Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Genetic Algorithms with Python

You're reading from   Hands-On Genetic Algorithms with Python Applying genetic algorithms to solve real-world deep learning and artificial intelligence problems

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781838557744
Length 346 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Eyal Wirsansky Eyal Wirsansky
Author Profile Icon Eyal Wirsansky
Eyal Wirsansky
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: The Basics of Genetic Algorithms
2. An Introduction to Genetic Algorithms FREE CHAPTER 3. Understanding the Key Components of Genetic Algorithms 4. Section 2: Solving Problems with Genetic Algorithms
5. Using the DEAP Framework 6. Combinatorial Optimization 7. Constraint Satisfaction 8. Optimizing Continuous Functions 9. Section 3: Artificial Intelligence Applications of Genetic Algorithms
10. Enhancing Machine Learning Models Using Feature Selection 11. Hyperparameter Tuning of Machine Learning Models 12. Architecture Optimization of Deep Learning Networks 13. Reinforcement Learning with Genetic Algorithms 14. Section 4: Related Technologies
15. Genetic Image Reconstruction 16. Other Evolutionary and Bio-Inspired Computation Techniques 17. Other Books You May Enjoy

Understanding elitism

While the average fitness of the genetic algorithm population generally increases as generations go by, it is possible at any point that the best individual(s) of the current generation will be lost. This is due to the selection, crossover, and mutation operators altering the individuals in the process of creating the next generation. In many cases, the loss is temporary as these individuals (or better individuals) will be re-introduced into the population in a future generation.

However, if we want to guarantee that the best individual(s) always make it to the next generation, we can apply the optional elitism strategy. This means that the top n individuals (n being a small, predefined parameter) are duplicated into the next generation before we fill the rest of the available spots with offspring that are created using selection, crossover, and mutation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image