This chapter describes how genetic algorithms can be used to improve the performance of supervised machine learning models by selecting the best subset of features from the provided input data. This chapter will start with a brief introduction to machine learning and then describe the two main types of supervised machine learning tasks – regression and classification. We will then discuss the potential benefits of feature selection when it comes to the performance of these models. Next, we will demonstrate how genetic algorithms can be utilized to pinpoint the genuine features that are generated by the Friedman-1 Test regression problem. Then, we will use the real-life Zoo dataset to create a classification model and improve its accuracy – again by applying genetic algorithms to isolate the best features for...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand