Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Generative Adversarial Networks with Keras

You're reading from   Hands-On Generative Adversarial Networks with Keras Your guide to implementing next-generation generative adversarial networks

Arrow left icon
Product type Paperback
Published in May 2019
Publisher Packt
ISBN-13 9781789538205
Length 272 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Rafael Valle Rafael Valle
Author Profile Icon Rafael Valle
Rafael Valle
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Section 1: Introduction and Environment Setup FREE CHAPTER
2. Deep Learning Basics and Environment Setup 3. Introduction to Generative Models 4. Section 2: Training GANs
5. Implementing Your First GAN 6. Evaluating Your First GAN 7. Improving Your First GAN 8. Section 3: Application of GANs in Computer Vision, Natural Language Processing, and Audio
9. Progressive Growing of GANs 10. Generation of Discrete Sequences Using GANs 11. Text-to-Image Synthesis with GANs 12. TequilaGAN - Identifying GAN Samples 13. Whats next in GANs

Discriminative and generative models compared

Broadly speaking, machine learning models can be subdivided into discriminative models and generative models. Discriminative models learn a map from some input to some output. In discriminative models, learning the process that generates the input is not relevant; it will just learn a map from the to the expected output.

Generative models, on the other hand, in addition to learning a map from some input to some output, also learn the process that generates the input and the output.

Source: Ian Goodfellow's Tutorial on Generative Adversarial Networks, 2017

In this context, we say that discriminative models estimate : the conditional probability distribution of conditioned on . Note that, in this case, the input x is fixed, known a priori, and the discriminative model estimates the probability of , , but does not have any information...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image